Содержание
Содержание
Введение3
1. Самоорганизация новая фундаментальная категория современной науки4
2. Процесс самоорганизации и формирования природных структур6
2.1. Структурные компоненты и свойства процесса самоорганизации6
2.2. Механизм, обеспечивающий организационный процесс7
2.3. Характеристики процесса самоорганизации7
2.4. Механизм самоорганизации в живой природе10
2.5. О механизмах самоорганизации в неживой природе16
Заключение26
Библиографический список27
Выдержка из текста работы
Человечество вступило в этап своего развития, который называют информационным обществом. В этих условиях появление новых парадигм познания вполне закономерно и наиболее интегральным в них становится синергетика.
Синергетика — новое направление в познании человеком природы, общества и самого себя, смысла своего существования. Новое качество в познании достигается за счет использования нелинейного мышления и синтеза достижений различных наук при конструировании образа мироздания.
Синергийный подход предполагает нелинейное развитие по бифуркационному сценарию, когда новое качество человека и общества не представляет собой результат закономерного поступательного развития, а является следствием выбора одного из возможных вариантов развития под влиянием коллективных и индивидуальных взаимодействий, которые могут изменить направление не только общественных преобразований, но и саму сущность человека.
Во второй половине XX века исследование сложных, самоорганизующихся систем вошло в круг важнейших задач развития научного знания. К числу таких систем стали относить социальные, информационные и биологические, физические и химические среды, психику человека, головной мозг и многие другое наступило осознание, что трансформация физических представлений по своему значению вышла за пределы физических наук, перешла на уровень космологических проблем, что исследование самоорганизации находится на границе естествознания и философии и необходимо создание определенной картины мира. В развитии естествознания и философии этот период оценен как эпоха, когда миновала возможность безапелляционных утверждений и взаимоисключающих позиций. Таким образом, методологическое и мировоззренческое осмысление самоорганизации стало, пожалуй, символом перехода в XXI век. Этим и мотивируется наше стремление разобраться в истории вопроса, содержании терминов и основных понятий синергетики.
1.Синергетика или теория самоорганизации в целом
.1 Общие представления
Окружающий нас мир находится в постоянном движении. В нем нет ничего неизменного. Каждое мгновение что-то меняется в этой гигантской лаборатории: из хаоса рождается упорядоченная целостность или наоборот целостность превращается в хаос. Одной из познавательных моделей современной науки, раскрывающей механизмы самоорганизации и эволюции систем и позволяющей объяснить, как из хаоса рождается порядок, стала синергетика или теория самоорганизации. Она изучает поведение открытых диссипативных нелинейных систем разного уровня сложности и разной природы, общие принципы их самоорганизации и эволюции, особенности процесса смены их качественных состояний на пути развития.
Особую роль в функционировании таких систем играют случайность, случайные флуктуации параметров. При этом необходимо различать два типа случайностей. Первый — дает начало направленной эволюции системы и имеет созидающий характер, второй — порождает неопределенность, неоднозначность, разрушает и отсекает все лишнее. Дезорганизация и случайность на микроуровне выступают созидающей силой, упорядочивающей состояние системы на макроуровне, интегрирующей ее элементы в устойчивое единое целое. В результате их действия в системе возникают неустойчивости, которые могут служить толчком для возникновения из хаоса «зародышей» новых структур, которые при благоприятных условиях будут переходить во все более упорядоченные и устойчивые. Их спонтанное (самопроизвольное) образование происходит за счет внутренней перестройки системы и синхронного (греч. synchronos — одновременный) кооперативного взаимодействия ее элементов. Это явление получило название самоорганизации. Самоупорядочивание системы связано со снижением ее энтропии. Порядок и беспорядок, организация и дезорганизация выступают в диалектическом единстве, их взаимодействие поддерживает саморазвитие системы.
Идеи самоорганизации высказывались еще в традиционной классической науке XYIII-XIX веков (космогоническая гипотеза Канта-Лапласа, рыночная экономическая теория Смита, эволюционная теория Дарвина, теория Максвелла-Больцмана, описывающая поведение термодинамических систем и т. д.). Но лишь во второй половине ХХ века, когда был накоплен достаточный теоретический и практический опыт, разработан необходимый математический аппарат (системный анализ, топология, теория бифуркаций, нелинейная динамика, теория катастроф и др.) стало возможным детальное исследование поведения открытых систем, находящихся вдали от термодинамического равновесия, описание общих механизмов и закономерностей их развития. Это и нашло отражение работах И. Пригожина, Д. Николиса, Г. Хакена.
В семидесятых годах ХХ столетия термин «синергетика» стал названием общенаучного направления, которое дает новый образ мира природы, человека и общества как открытых систем, развивающихся по нелинейным законам, раскрывает двойственную природу случайного, его созидающее и деструктивное начала, показывает, что чередование порядка и хаоса является фундаментальным принципом развития.
Описывая процесс самоорганизации Г. Хакен, отмечает, что возникающая из хаоса упорядоченная структура является результатом конкуренции множества виртуальных состояний, заложенных в системе. В результате конкуренции происходит самопроизвольный выбор той структуры, которая наиболее адаптивна к сложившимся на данный момент как внешним, так и внутренним условиям.
В системе под влиянием поступающих извне ресурсов идет медленное количественное накопление несущественных изменений, что приводит к ослаблению гомеостаза. Это происходит до определенного предела, за которым наблюдается кардинальное изменение ее состояния, которое осуществляется практически мгновенно, скачком. Система временно оказывается в неустойчивом состоянии, «теряет память», и характер ее последующего развития определяется только теми случайными факторами, которые в этот момент действуют на систему. Для выхода из него у системы есть две возможности: деградация, разрушение, инволюция либо самоорганизация, усложнение, эволюция. Количественные изменения переходят в качественные и весь процесс развития системы можно представить как череду сменяющих друг друга медленных и скачкообразных изменений.
1.2 Элементы теории самоорганизации систем
) Фазовое пространство и фазовые траектории
Состояние системы в любой момент времени зависит от ее начальных параметров и множества внутренних и внешних факторов. Например, для нахождения возможных вариантов колебания физического маятника нужно знать всего два параметра — координату и скорость. Их значение в момент времени t будет определяться свойствами самого маятника (длина его подвеса, масса, момент инерции) и внешними условиями, в которых происходят колебания (вынуждающая сила, трение, ускорение свободного падения). В более сложных системах таких параметров будет значительно больше. Среди всей их совокупности выделяют наиважнейшие — управляющие(главные), характер изменения которых оказывает определяющее влияние на поведение системы. (Например, ежегодная численность популяции живых организмов, проживающих на определенной территории, обусловлена, главным образом, двумя параметрами: коэффициентом размножения и состоянием природных ресурсов территории.
Как известно, все свободные колебания являются затухающими. Но, если колеблющуюся систему регулярно подпитывать энергией (вынуждать ее колебаться), можно добиться постоянства значений параметров колебаний (частоты, амплитуды), то есть вывести их на фазовую траекторию, которая отвечает установившемуся режиму.
В общем случае фазовое пространство есть некое воображаемое абстрактное пространство. Чем больше переменных требуется для описания состояния системы, тем больше его «мерность». Например, для описания социальной системы необходимо знать выраженные в единой количественной (например десятибалльной) шкале показатели состояния экономики и технологий, уровень здоровья и образования населения, рождаемость и смертность, наличие природных ресурсов и их качество, уровень общей и экологической культуры, состояние дорог, транспорта, сферы обслуживания и т. д. Фазовое пространство такой системы многомерно, его метрика определяется числом выделенных параметров.
В результате обмена ресурсами с другими системами, а также случайных флуктуаций с течением времени параметры системы изменяются, происходит последовательная смена состояний. Точка, соответствующая определенному состоянию системы, перемещается внутри фазового пространства вдоль фазовой траектории, вид которой зависит от интенсивности процессов обмена системы с окружающей средой, свойств системы и характера изменения ее внутреннего состояния.
Чтобы представить фазовую траекторию в аналитическом виде, необходимо знать взаимосвязь между параметрами системы. В случае открытых систем, далеких от равновесия, независимо от их природы, эта взаимосвязь может быть выражена через совокупность нелинейных (т. е. содержащих переменные в степени, большей единицы) дифференциальных (связывающих искомую функцию, ее производные и независимые переменные) уравнений.
) Точка бифуркации
В общем случае решение таких уравнений графически может быть представлено семейством фазовых траекторий.Точки их пересечения (если таковые имеются) носят название точек бифуркации(лат. bifurcus — вилка, раздвоенный) — точек «выбора» системой дальнейшего пути развития. Точки бифуркации — это особые точки — точки равновесия, которое может быть как устойчивым, так и неустойчивым. С позиций синергетики интерес представляют именно неустойчивые состояния. Их появление означает потенциальную возможность перехода системы в новое качественное состояние, новый режим, которому будет отвечать новый тип ее поведения.
Эти состояния, их характер и параметры зависят от граничных условий, задаваемых свойствами среды, в которой находятся исследуемые системы. При этом изменение управляющего параметра ведет к удвоению периода бифуркации, возникает два новых состояния (удвоение М. Фейгенбаума), например, деление клетки или крупных и трудноуправляемых социально-экономических систем на более эффективные.
) Фракталы и аттракторы
В точках бифуркации перед самоорганизующейся системой открывается множество вариантов (поле) путей развития. Одновременно возникает множество диссипативных динамических микроструктур — прообразов будущих состояний системы — фракталов (англ. fractial — дробный).
Как правило, большинство из фрактальных состояний оказываются невыгодными с точки зрения фундаментальных законов, и либо разрушаются полностью, либо остаются как отдельные рудименты, архаические остатки прошлого, с которыми мы нередко сталкиваемся не только в мире природы, но и в жизни общества, языке и культуре народов. В точке бифуркации происходит своеобразная их конкуренция, «выживает» то из них, которое является наиболее адаптивным к сложившимся на данный момент как внешним, так и внутренним условиям.
Здесь чрезвычайно важную роль играют кооперативные (совместные) процессы внутри самой системы, основывающиеся на когерентном (согласованном) взаимодействии элементов зарождающейся фрактальной структуры. Это взаимоподдерживающее соразвитие элементов, способствующее сохранению устойчивости развития системы, получило название коэволюции.
В среде, находящейся в особом состоянии, неустойчивости сменяются устойчивостями, и этот процесс периодически повторяется. Эта направленная череда событий, этот бесконечный круговорот созиданий и разрушений, с которым связано обновление, усложнение и совершенствование мира есть ни что иное, как эволюция. Система проходит через бифуркации и случайность от хаоса через промежуточные простые структуры до сложноорганизованных. Вектор эволюции всегда направлен по пути отбора фракталов, более адаптивных, более приспособленных к внешним условиям. При этом иногда происходит усложнение и реализуется более высокая степень организации, а иногда процесс идет по пути упрощения. Благодаря этим процессам мы наблюдаем то великое разнообразие простых и сложных биологических организмов, определенное соотношение между которыми и обусловливает устойчивость биосферы Земли.
Чем разнообразнее состав системы, чем выше способность ее элементов к кооперации, тем больше возможностей для образования новых типов внутренних взаимосвязей, тем выше адаптивные возможности системы, а значит, и стабильнее ее функционирование. Системе как бы «предписан» путь развития, оптимальный с точки зрения выполнимости объективных законов природы (прежде всего законов сохранения) и соответствия внешним условиям. Она живет не вопреки, а сообразно этим законам. Их нарушение грозит ей разрушением.
Но даже, если она и развивается сообразно этим законам природы, картина ее будущего весьма неопределенна и принципиально непредсказуема в силу фундаментальной роли случайного. На сцене эволюции господствует его величество случай. Именно он выступает изобретателем и творцом будущего. Случайное слабое внешнее воздействие или слабые флуктуации внутренних параметров, «приуроченные» к определенному моменту развития системы, могут привести к большим ее внутренним изменениям.
2. Синергетическая картина мира и универсальный эволюционизм
2.1 Синергетическая картина мира
Общие закономерности протекания процессов самоорганизации социоприродных систем, выявленные синергетикой, позволяют наиболее полно проиллюстрировать единство всего сущего, построить картину мира, в которой все — жизнь неживой и живой природы, жизнь и творчество человека, жизнь общества — связано со всем и подчинено единым вселенским фундаментальным законам. Это обобщенная синергетическая картина мира.
Ее ядро составляют идеи:
Мир представляет суперсистему, состоящую из иерархии взаимосвязанных подсистем разного уровня сложности, в которой системы более низкого иерархического уровня являются элементами систем более высокого уровня. Для описания их состояния необходимо знать огромное число параметров, характеризующих всю суперсистему и каждую подсистему в отдельности.
Мир находится в постоянном изменении. Этот глобальный процесс представляет периодическую смену разрушений старого и созиданий нового на пути самоорганизации и усложнения.
Самоорганизация и усложнение возможны лишь в открытых диссипативных системах, которые обмениваются с окружающей средой веществом, энергией и информацией и находятся вдали от термодинамического равновесия.
Закономерности развития систем носят вероятностный стохастический характер; случайность и неопределенность выступают как фундаментальное свойство всего сущего. Случайное изменение отдельных внешних или внутренних параметров системы, отклонение их от равновесного значения (флуктуации) могут вызвать неустойчивость состояния всей системы или ее частей и послужить конструктивным началом для усложнения и перехода на качественно новую ступень развития.
Процесс самоорганизации происходит в результате взаимодействия случайности и необходимости и всегда связан с переходом от неустойчивости к устойчивости более высокого порядка.
Самоорганизация обусловлена кооперативными процессами, коллективным согласованным резонансным взаимодействием элементов системы; интеграцией их совместных усилий на пути развития системы; именно благодаря этому зарождаются новообразования, которые при благоприятных условиях могут перерасти в новую макроструктуру.
Развитие происходит по нелинейным законам. Нелинейность означает многовариантность путей выбора и альтернатив выхода из неустойчивых состояний.
Глобальный процесс самоорганизации природы, бесконечный в пространстве и времени просматривается во множестве уровней и проходит через несколько этапов.
. Самоорганизация и эволюция косной (неживой) материи. В этом процессе можно выделить два направления:
химическая эволюция: элементарные частицы, атомы, неорганические молекулы, простые органические молекулы, биополимеры;
структурная эволюция Вселенной: газопылевая туманность, звездная система, галактика, метагалактика, Вселенная.
Эти процессы происходят благодаря примитивным способам отражения косной материи и обмену физической информацией (взаимодействию), носителем которой являются гравитационное, электромагнитное, слабое и сильное поля. Это этап предбиологической эволюции.
. Самоорганизация и эволюция живого вещества. На определенном этапе эволюции косной материи, в какой-то момент времени, в какой-то точке Вселенной создались условия, при которых органическое вещество сгруппировалось в системы, способные к саморегуляции и самовоспроизведению. Последовательное усложнение этих систем в течение миллиардов лет привело к появлению высокоорганизованных животных. Живое возникло и существует благодаря наличию косного вещества. Между живым и неживым сложная взаимосвязь, определяемая потоками энергии, информации и вещества, поддерживающими гомеостаз живых систем, существующих в виде сообществ разного уровня сложности.
Живое вещество обладает более сложной формой отражения, имеющей опережающий характер. Ему присущи более сложные формы приема, накопления и передачи информации. На Земле процесс эволюции живого идет вот уже около 3,5 миллиардов лет.
. На вершине эволюционной пирамиды живого находится человек, обладающий самым высокоорганизованным, из всех известных нам организмов, мозгом и психикой, способный осмысленно познавать окружающий мир и самого себя. Процесс антропогенеза (оформление человека как биологического существа) начался около 50 миллионов лет назад.
) На определенном этапе эволюции от высших животных к человеку возникают сообщества, основанные на разуме и коллективной деятельности. В процессе самоорганизации сообществ в течение нескольких миллионов лет происходила социальная и психическая эволюция человека, зарождалась культура. В этот период усложняются коммуникативные отношения, техническая оснащенность, уровень познания и использования природы. Человек изменяет характер энергетических, вещественных и информационных потоков, активно вторгается в биогеохимические циклы, создает искусственные системы и управляет ими.
2.2 Универсальный эволюционизм
Анализ самоорганизации окружающего мира на уровне косного, живого и социального указывает на общие характерные закономерности процессов, протекающих в системах разного уровня, общие тенденции и направленность эволюции. В рамках этих представлений Н. Н. Моисеевым была предложена концепция универсального эволюционизма. В ней дарвиновская триада, выдвинутая на основе эмпирических обобщений — изменчивость, наследственность и отбор получила методологическое обоснование. Выведя эти термины за пределы биологического и расширив их смысл, можно использовать их для объяснения механизма развития систем любой природы. Случайность и неопределенность — это фундаментальное свойство материи обуславливает изменчивость окружающего мира. Наследственность означает зависимость настоящего и будущего от прошлого. Степень этой зависимости определяется «памятью» системы, которая в пределе может принимать значения от нуля (хаотические образования, лишенные памяти) до бесконечности (жестко детерминированные системы). Но реальные системы имеют некоторый «коридор» памяти; ширина которого зависит от уровня их организации. Изменчивость создает возможность реализации множества возможных вариантов развития системы. Однако наследственность ограничивает их число. Из множества допустимых вариантов «отбираются» те, которые не противоречат фундаментальным законам природы, в результате отбора «выживают» наиболее целесообразные и устойчивые в сложившихся условиях структуры.
По своей масштабности открытие механизмов самоорганизации систем и закономерностей универсального эволюционизма стало научной революцией, более мощной, чем научные революции начала ХХ века, связанные со становлением теории относительности и квантовой механики. Синергетика дает новый образ мира как открытой системы, развивающейся по нелинейным законам, раскрывает двойственную природу хаоса, его созидающее и деструктивное начала. Новое звучание принимает креативная триада Хаос-Теос-Космос, обсуждавшая в мифологии и религии. Только уже роль Теоса — управителя мира, играет способность Хаоса к самоорганизации. А случайность, неопределенность и вероятность оказываются фундаментальными свойствами природы.
Вместе с тем, нельзя считать синергетику как некую панацею. Это всего лишь одна из интерпретаций, используемых в понимании сложного, один из возможных подходов к описанию мира. Она позволяет объединить, казалось бы, разнордные явления и процессы, протекающие в неживой природе, живом веществе и обществе в единое целое, используя общий язык для их описания. Это позволяет увидеть весь окружающий мир в контексте единого процесса развития. В настоящий момент модели, построенные синергетикой, более реалистичны, более адекватно описывают особенности развития окружающего мира. Но вовсе не исключено, что в будущем найдутся новые, более совершенные модели и подходы к его описанию.
3. Теория самоорганизации
3.1 Основные положения
Наш мир, всё, что доступно в нём наблюдению. претерпевают непрерывные изменения — мы наблюдаем его непрекращающуюся эволюцию. Все подобные изменения происходят за счёт сил внутреннего взаимодействия, во всяком случае, никаких внешних по отношению к нему сил мы не наблюдаем. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует. Таким образом, всё, что происходит вокруг нас, мы можем считать процессом самоорганизации, то есть процессом, идущим за счёт внутренних стимулов, не требующих вмешательства внешних факторов, не принадлежащих системе. К числу таких процессов относится также и становление и действие Разума, ибо он родился в системе в результате её эволюции.
Итак, весь процесс эволюции системы — процесс самоорганизации. Мир всё время меняется. Мы не можем утверждать, что процесс самоорганизации направлен на достижение состояния равновесия ( под которым понимается абсолютный хаос), у нас нет для этого опытных оснований, гораздо больше данных для утверждения обратного — мир непрерывно развивается, и в этом изменении просматривается определённая направленность, отличная от стремления к равновесию.
Для описания основ процесса самоорганизации удобно (хотя и заведомо недостаточно) использовать терминологию дарвиновской триады: наследственность, изменчивость, отбор, придав этим понятиям более широкий смысл.
Изменчивость в этом более широком смысле — это вечно присутствующие факторы случайности и неопределённости. Без предположения о непрерывно действующих случайных факторах, постоянная эволюция системы, сопровождающаяся появлением новых качественных особенностей, по-видимому, невозможна.