Содержание
Введение3
1. Предпосылки возникновения теории относительности5
1.1. Фундаментальные противоречия в основаниях классической механики5
1.2. Происхождение названия “теория относительности”7
2. Относительность одновременности событий10
3. Преобразования Лоренца12
4. Зависимость массы тела от скорости13
5. Закон взаимосвязи массы и энергии15
6. Изучение вопросов теории относительности в школьных курсах физики17
Заключение20
Список использованной литературы22
Выдержка из текста работы
Родился в Германии, в городе Ульме. С 14 лет вместе с семьей жил в Швейцарии, где в 1900 г. окончил Цюрихский политехникум. В 1902-1909 гг. служил экспертом патентного бюро в Берне. В эти годы Эйнштейн создал специальную теорию относительности, выполнил исследования по статистической физике, броуновскому движению, теории излучения и др. Работы Эйнштейна получили известность, и в 1909 г. он был избран профессором Цюрихского университета, а затем — Немецкого университета в Праге. В 1914 г. Эйнштейн был приглашен преподавать в Берлинский университет. В период своей жизни в Берлине он завершил создание общей теории относительности, развил квантовую теорию излучения. За открытие законов фотоэффекта и работы в области теоретической физики Эйнштейн получил в 1921 г. Нобелевскую премию. В 1933 г. после прихода к власти в Германии фашистов Эйнштейн эмигрировал в США, в Принстон, где он до конца жизни работал в Институте высших исследований.
В 1905 г. была опубликована специальная теория относительности — механика и электродинамика тел, движущихся со скоростями, близкими к скорости света.
Тогда же Эйнштейн открыл закон взаимосвязи массы и энергии (Е=mc2), который лежит в основе всей ядерной энергетики.
Ученый внес большой вклад в развитие квантовой теории. В его теории фотоэффекта свет рассматривается как поток квантов (фотонов). Существование фотонов было подтверждено в 1923 г. в экспериментах американского физика А. Комптона. Эйнштейн установил основной закон фотохимии (закон Эйнштейна), по которому каждый поглощенный квант света вызывает одну элементарную фотохимическую реакцию. В 1916 г. он теоретически предсказал явление индуцированного (вынужденного) излучения атомов, лежащее в основе квантовой электроники.
Вершиной научного творчества Эйнштейна стала общая теория относительности, завершенная им к 1916 г. Идеи Эйнштейна изменили господствовавшие в физике со времен Ньютона механистические взгляды на пространство, время и тяготение и привели к новой материалистической картине мира.
Ученый работал и над созданием единой теории поля, объединяющей гравитационные и электромагнитные взаимодействия. Научные труды Эйнштейна сыграли большую роль в развитии современной физики — квантовой электродинамики, атомной и ядерной физики, физики элементарных частиц, космологии, астрофизики.
А. Эйнштейн был членом многих академий мира и научных обществ. В 1926 г. его избрали почетным членом Академии наук СССР.
1. Предпосылки возникновения теории относительности
1.1. Фундаментальные противоречия в основаниях классической механики
В начале XX в. на смену классической механике пришла новая фундаментальная теория — специальная теория относительности (СТО). Созданная усилиями ряда ученых, прежде всего А. Эйнштейном, она позволила непротиворечиво объяснить многие физические явления, которые не укладывались в рамки классических представлений. В первую очередь это касалось закономерностей электромагнитных явлений в движущихся телах.
Создание теории электромагнитного поля и экспериментальное доказательство его реальности поставили перед физиками задачу выяснить, распространяется ли принцип относительности движения (сформулированный еще Галилеем), справедливый для механических явлении, на явления, присущие электромагнитному полю. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению к другу) применимы одни и те же законы механики. Но справедлив ли принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнитных явлений?
Ответ на этот вопрос требовал изучения закономерностей взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой — носителем электромагнитных колебаний. Отдаленные истоки такого рода исследований складывались еще в XVIII в. в оптике движущихся тел. Впервые вопрос о влиянии движения источников свеча и приемников, регистрирующих световые сигналы, на оптические явления возник в связи с открытием аберрации света английским астрономом Брадлеем в 1728 г. (см. 7.1). Данный вопрос применительно к волновой теории света был значительно более сложным, чем для теории, основанной на представлении о корпускулярной природе света. Его решение требовало введения ряда гипотетических допущений относительно явлений, которые очень сложно выявить в опыте: как взаимодействуют весомые тела и эфир (полагали; что эфир проникает в тела); отличается ли эфир внутри тел от эфира, находящегося вне их, а если отличается, то чем; как ведет себя эфир внутри тел при их движении, и т.д. В физике сложилось три различных интерпретации характера взаимодействия вещества и эфира.
Возрождавший волновую теорию света в начале XIX в. Т. Юнг, касаясь вопросов оптики движущихся тел, отметил, что явление аберрации света может быть объяснено волновой теорией света, если предположить, что эфир повсюду, в том числе и внутри движущихся тел, остается неподвижным. В этом случае явление аберрации объясняется, как и в корпускулярной теории света.
В 1846 г. английский физик Дж. Г. Стоке разработал новую теорию аберрации, основанную на аналогиях с гидродинамикой. Он исходил из предположения, что Земля при своем движении полностью увлекает окружающий ее эфир и скорость эфира на поверхности Земли в точности равна ее скорости. Но последующие слои эфира движутся все медленнее и медленнее, и это обстоятельство и вызывает искривление волнового фронта, что и воспринимается как аберрация. Из этой теории следует, что в любых оптических опытах, проведенных на Земле, не может быть обнаружена скорость ее движения.
Существовала и третья точка зрения, принадлежавшая Френелю. Он предположил, что эфир частично увлекается движущимися телами. Френель показал также, что коэффициент увлечения имеет порядок {у/с)’2, а значит, опытная проверка этой идеи требует очень точного эксперимента.
Сравнивая свою теорию с теорией Френеля, Стоке указывал, что эти теории хотя и основываются на противоположных гипотезах, но практически приводят к одинаковым результатам. Опыты, имевшие целью обнаружить скорость движения Земли относительно эфира, не дали положительных результатов. Они объяснялись и теорией Стокса, и теорией Френеля, поскольку их точность была недостаточной для обнаружения эффекта порядка (у/с)’2.
Принципиальная сторона вопроса сводилась в сущности к двум возможным гипотетическим допущениям. Первое допущение состояло в том, •что эфир полностью увлекается движущейся системой Второе допущение прямо противоположно первому: движущаяся система проходит через эфир, не захватывая его.
1.2. Происхождение названия “теория относительности”
Название “теория относительности” возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени.
Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.
Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.
Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром. Зародилось, таким образом, представление об абсолютном движении относительно системы, связанной с эфиром, представление, противоречащее более ранним воззрениям классической механики (принцип относительности Галилея). Опыты Майкельсона и других физиков опровергли эту теорию “неподвижного эфира” и дали основание для формулировки противоположного утверждения, которое и получило название “принципа относительности”. Так это название вводится и обосновывается в первых работах Пуанкаре и Эйнштейна.
Эйнштейн пишет: “.. неудавшиеся попытки обнаружить движение Земли относительно “светоносной среды”
ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того, — к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться “принципом относительности”) превратить в предпосылку… “ А вот что пишет Пуанкаре: “Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок.”
Но крупнейший советский теоретик Л. И. Мандельштам в своих лекциях по теории относительности
разъяснял: “Название “принцип относительности” — одно из самых неудачных. Утверждается независимость явлений от неускоренного движения замкнутой системы. Это вводит в заблуждение многие умы” На неудачность названия указывал и один из творцов теории относительности, раскрывший ее содержание в четырехмерной геометрической форме, — Герман Минковский. В 1908 г. он утверждал: “… термин “постулат относительности” для требования инвариантности по отношению к группе , кажется мне слишком бедным. Так как смысл постулата сводится к тому, что в явлениях нам дается только четырехмерный в пространстве и времени мир, но что проекции этого мира на пространство и на время могут быть взяты с некоторым произволом, мне хотелось бы этому утверждению дать название: постулат абсолютного мира”
Таким образом, мы видим, что названия “принцип относительности” и “теория относительности” не отражают истинного содержания теории.
. 2. Относительность одновременности событий
В механике Ньютона одновременность двух событий абсолютна и не зависит от системы отсчёта. Это значит, что если два события происходят в системе K в моменты времени t и t1, а в системе K’ соответственно в моменты времени t’ и t’1 , то поскольку t=t’, промежуток времени между двумя событиями одинаков в обеих системах отсчёта
В отличие от классической механики, в специальной теории относительности одновременность двух событий, происходящих в разных точках пространства, относительна: события, одновременные в одной инерциальной системе отсчёта, не одновременны в других инерциальных системах, движущихся относительно первой. На рисунке (см. ниже) расположена схема эксперимента, который это иллюстрирует. Система отсчета K связана с Землёй, система K’ — с вагоном, движущимся относительно Земли прямолинейно и равномерно со скоростью v. На Земле и в вагоне отмечены точки А, М, В и соответственно А’, M’ и В’, причем АМ=МВ и А’M’=M’B’. В момент, когда указанные точки совпадают, в точках А и В происходят события — ударяют две молнии. В системе К сигналы от обоих вспышек придут в точку М одновременно, так как АМ=МВ, и скорость света одинакова во всех направлениях. В системе К’, связанной с вагоном, сигнал из точки В’ придет в точку M’ раньше, чем из точки А’, ибо скорость света одинакова во всех направлениях, но М’ движется навстречу сигналу пущенному из точки B’ и удаляется от сигнала, пущенного из точки А’. Значит, события в точках А’ и B’ не одновременны: события в точке B’ произошло раньше, чем в точке A’. Если бы вагон двигался в обратном направлении, то получился бы обратный результат.
Понятие одновременности пространственно разделенных событий относительно. Из постулатов теории относительности и существования конечной скорости распространения сигналов следует, что в разных инерциальных системах отсчёта время протекает по-разному.
3. Преобразования Лоренца
В соответствии с двумя постулатами специальной теории относительности между координатами и временем в двух инерциальных системах К и К’ существуют отношения, которые называются преобразованиями Лоренца.
В простейшем
случае, когда система К’ движется относительно системы К со скоростью v так, как показано на рисунке (см ниже), преобразования Лоренца для координат и времени имеют следующий вид:
, , , ,, , ,.
Из преобразований Лоренца вытекает тесная связь между пространственными и временными координатами в теории относительности; не только пространственные координаты зависят от времени (как в кинематике), но и время в обеих системах отсчёта зависит от пространственных координат, а также от скорости
движения системы отсчёта K’.
Формулы преобразований
Лоренца переходят в формулы кинематики при v/c<<1. В этом случае
, , , ,
, , , .
Переход формул теории относительности в формулы кинематики при условии v/c <<1
является проверкой справедливости этих формул.
4. Зависимость массы тела от скорости
Зависимость свойств пространства
и времени от движения системы отсчета приводит к тому, что сохраняющейся при любых взаимодействиях
тел является величина
, называемая релятивистским импульсом, а не классический импульс.
Классический закон сложения скоростей и классический закон сохранения импульса являются частными случаями универсальных релятивистских законов и выполняются только при значениях скоростей, значительно меньших скорости света в вакууме.
Релятивистский импульс тела можно рассматривать как произведение релятивистской массы т тела на скорость его движения. Релятивистская масса т тела возрастает с увеличением скорости по закону
, где
— масса покоя тела,
— скорость его движения.
Возрастание массы тела с увеличением скорости приводит к тому, что ни одно тело с массой покоя, не равной нулю, не может достигнуть скорости, равной скорости света в вакууме, или превысить эту скорость. Скорость , большая , приводит для обычных частиц к мнимой массе и мнимому импульсу, что физически бессмысленно. Зависимость массы от скорости начинает сказываться лишь при скоростях, весьма близких к (См рисунок №2). Приведённые в этом пункте формулы неприменимы к фотону, так как у него отсутствует масса покоя (). Фотон всегда движется со скоростью, равной скорости света в вакууме, и является ультрарелятивистской частицей. Тем не менее, отсюда не следует постоянство скорости света во всех веществах. При
выражение для импульса переходит в то, которое используется в механике Ньютона , где под
понимается масса покоя (), ибо при
различие и несущественно.
Рисунок №2
5. Закон взаимосвязи массы и энергии
Полная энергия Е тела (или частицы) пропорциональна релятивистской массе (закон взаимосвязи массы и энергии):
, где с — скорость света в вакууме. Релятивистская масса зависит от скорости , с которой тело (частица) движется в данной системе отсчета. Поэтому полная энергия различна в разных системах отсчета.
Наименьшей энергией тело (частица) обладает в системе отсчета, относительно которой оно покоится (). Энергия
называется собственной энергией или энергией покоя тела (частицы):
. Энергия покоя тела является его внутренней энергией Она состоит из суммы энергий покоя всех частиц тела , кинетической энергии всех частиц относительно общего центра масс и потенциальной энергии их взаимодействия. Поэтому
где — масса покоя — й частицы.
В релятивистской механике несправедлив закон сохранения массы покоя. Например, масса покоя
атомного ядра меньше, чем сумма собственных масс частиц, входящих в ядро. Наоборот масса покоя частицы, способной к самопроизвольному распаду, больше суммы собственных масс продуктов распада
. Несохранение массы покоя не означает нарушения закона сохранения массы вообще. В теории относительности справедлив закон сохранения релятивистской массы. Он вытекает из формулы закона взаимосвязи массы и энергии . В изолированной системе тел сохраняется полная энергия. Следовательно, сохраняется и релятивистская масса. В теории относительности законы сохранения энергии и релятивистской массы взаимосвязаны и представляют собой единый закон сохранения массы и энергии. Однако из этого закона отнюдь не следует возможность преобразования массы в энергию и обратно. Масса и энергия представляют собой два качественно различных свойства материи, отнюдь не «эквивалентных» друг другу. Ни один из известных опытных фактов не дает оснований для вывода о «переходе массы в энергию». Превращение энергии системы из одной формы в другую сопровождается превращением массы. Например, в явлении рождения и уничтожения пары электрон — позитрон, в полном соответствии с законом сохранения релятивистской массы и энергии, масса не переходит в энергию. Масса покоя частиц (электрона и позитрона) преобразуется в массу фотонов, то есть в массу электромагнитного поля.
Гипотеза Эйнштейна о существовании собственной энергии тела подтверждается многочисленными экспериментами. На основе использования закона взаимосвязи массы и энергии ведутся расчеты выхода энергии в различных ядерных энергетических установках.
6. Изучение вопросов теории относительности в школьных курсах физики
Тема «Принцип относительности» в курсе физики 9 класса рассматривается в учебниках, допущенных Министерством образования РФ, таких как «Физика 9» под редакцией Н.М. Шахмаева, «Физика 9»
М.М. Балашова.
В обоих учебниках тема «Принцип относительности» рассматривается в теме «Динамика». Шахмаев начинает изучение темы с
жизненного примера:
Допустим, что на берегу полноводной равнинной без поворотов реки и в трюме баржи, плывущей по течению этой реки с постоянной скоростью, оборудованы 2 совершенно одинаковые лаборатории для изучения механических явлений. Лаборатории оснащены абсолютно одинаковыми приборами для измерения расстояний, времени, массы, силы, ускорения и т.д. Допустим также, что баржа плывет со скоростью
относительно берегов и не испытывает никакой качки.
И задается таким вопросом:
Системы отсчета, связанные с лабораториями, обозначим XY и X1Y1. Эти системы инерциальны. Равноправны ли они?
А Балашов начинает параграф с исторической справки на тему «Столкновение здравого смысла и науки». И вообще весь учебник построен на принципе историзма; мне кажется, что этот учебник больше подошел бы для гуманитарных классов, хотя в нем и выделяют три уровня изучения материала.
Простейший, общепознавательный уровень обозначен в параграфе цифрой I. Уровень, обозначенный в параграфе цифрой II, рекомендуется будущим инженерам. III уровень предназначен для будущих физиков.
Но учебник Балашова более иллюстрирован, чем учебник Шахмаева.
Шахмаев делит параграф «Принцип относительности Галилея» на четыре подпункта:
мысленный опыт Галилея;
время, перемещение и скорость в разных инерциальных системах отсчета;
масса, ускорение и сила в разных инерциальных системах отсчета;
формулировка принципа относительности Галилея.
Балашов М.М. разделяет параграф упражнениями, рекомендуемыми для выполнения, типа:
Обдумайте и обсудите высказывания Эйнштейна. Нет ли возражений?
Почему Галилей предлагал проводить опыты под палубой парусника, а не на палубе и др.
Шахмаев в первом подпункте приводит размышления Галилея, после которых Галилей пришел к выводу, что две инерциальные системы отсчета, движущиеся относительно друг друга прямолинейно и равномерно, равноправны. Во втором – знакомит с преобразованиями Галилея. В третьем подпункте Шахмаев знакомит учеников с массой, ускорением и силой в разных ИСО. А формулировку принципа относительности Галилея:
Все инерциальные системы равноправны — это проявляется в том, что законы механики в них записываются одинаково.
вводит в четвертом подпункте параграфа.
А параграф «Принцип относительности» в учебнике Балашова М.М. представлен, как я уже упоминал, одной большой исторической справкой, где приводятся формулы, но не объясняется почему мы взяли именно эту формулу. Но формулировка закона природы(принципа относительности) изложена на более доступном для понимания уровне, чем в учебнике Шахмаева Н.М.:
Все механические процессы протекают совершенно одинаково во всех ИСО. Все ИСО равноправны с позиций механики; нет ни одной избранной, которую можно было бы предпочесть другой на том основании, что какой-то механический опыт в ней протекает иначе, чем в других ИСО.
Хотя учебник Балашова и уступает учебнику Шахмаева, с точки зрения физика, но он написан на понятном ученику языке, его приятно читать, с ним приятно работать:
Если идея относительности еще не вполне осознана вами, не огорчайтесь. У нас будет повод вернуться к ней еще не раз и узнать вещи потрясающие. Но об этом позднее.
Также были рассмотрены учебники по физике для 9-го класса под редакцией: Буховцева Б.Б.; Саенко П.Г.; Громова С.В., Родиной Н.А.; Кикоина И.К.; Перышкина А.В.. В этих учебниках данная тема рассматривается в курсе физики полной школы.
Заключение
Сорок — пятьдесят лет назад можно было наблюдать очень большой интерес к теории относительности со стороны широких кругов несмотря на то, что тогда в книгах и статьях по теории относительности речь шла об очень далеких от повседневного опыта и очень абстрактных вещах. Широкие круги проявили удивительное чутье, они чувствовали, что теория, с такой смелостью посягнувшая на основные представления о пространстве и времени, не может не привести при своем развитии и применении к очень глубоким и широким производственно — техническим и культурным последствиям. Это предчувствие не обмануло людей. Воплощением нового релятивистского учения об энергии, а следовательно, и всей теории относительности в целом является атомная эра, которая расширяет власть человека над природой больше, чем это сделали предшествующие научные и технические революции.
Атомная эра будет эрой дальнейших коренных преобразований физической картины мира. Сейчас нельзя предвидеть, каким образом изменятся представления о пространстве, времени, движении, элементарных частицах и их взаимодействиях. Можно указать только на некоторые проблемы современной физики, которые, видимо, будут решены лишь при переходе к новой физической картине мира.
Теория относительности, созданная Эйнштейном в 1905 г., стала законченной теорией движения макроскопических тел. Её применение в теории элементарных частиц наталкивается на ряд серьезных трудностей, которые, быть может, свидетельствуют о необходимости нового понимания принципа относительности. Развитие атомной и особенно ядерной физики — блестящий триумф теории Эйнштейна — указывает вместе с тем на возможное дальнейшее развитие и обобщение этой теории.
Теория относительности ждет дальнейшего развития и обобщения и в другом направлении, помимо картины движений, взаимодействий и трансмутаций элементарных частиц в областях порядка 10-13 см, Она все в большей степени становится теорией, описывающей строение космических областей, по сравнению с которыми исчерпывающе малы расстояния между звездами и даже расстояния между галактиками.
В физике XX века теория относительности сыграла особую и своеобразную роль
Список использованной литературы
О.Ф. Кабардин «Физика. Справочные материалы»
«Принцип относительности»; Лоренц, Пуанкаре, Эйнштейн, Минковский; ОНТИ., 1935 г.
Полное собрание трудов; Л. И. Мандельштам.
«Парадоксы теории относительности»;
Я. П. Терлецкий; Москва., 1994 г.
«Физика пространства-времени»; Э. Ф. Тейлор; Москва., 1998 г.
«Общая теория относительности»; Н. В. Мицкевич; Москва., 1927 г.
Б.М. Яворский, Ю.А. Селезнёв «Справочное руководство по физике»
Б.Г. Кузнецов
«Беседы о теории относительности» 2000.
“Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский; ОНТИ ; 1935 г., стр. 134
“Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский; ОНТИ ; 1935 г., стр. 51
Полное собрание трудов, Л. И. Мандельштам; Том 5, стр. 172
“Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский; ОНТИ ; 1935 г., стр. 192
Системы отсчёта, в которых справедлив закон инерции (первый закон Ньютона) называют инерциальными системами отсчёта
Тело (или частица) не находится в силовом поле
1 2