Содержание
ВВЕДЕНИЕ3
ГЛАВА I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ5
1.1. Первое знакомство с параметром5
1.2. Понятие параметра6
1.3. Что означает «решить задачу с параметром»?7
1.4. Основные типы задач с параметрами8
1.5. Основные способы (методы) решения задач с параметром9
ГЛАВА II. ПРАКТИЧЕСКАЯ ЧАСТЬ10
2.1. Аналитические методы решения задач с параметрами10
1. Решение уравнений, неравенств и их систем10
2. Свойства функций в задачах с параметрами19
2.2. Графическое решение уравнений с параметром24
1. Координатная плоскость (х;у)24
2. Координатная плоскость (х;а)29
2.3. Квадратный трехчлен и параметры31
ЗАКЛЮЧЕНИЕ35
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ36
ПРИЛОЖЕНИЕ37
Выдержка из текста работы
- Введение
- §1. Роль и место геометрических построений в школьном курсе
- §2. Методика решения задач по стереометрии
- §3. Основы теории геометрических построений
- 3.1 Общие аксиомы конструктивной геометрии
- 3.2 Задача на построение
- §4. Методика решения задач на построение в стереометрии
- 4.1 Анализ
- 4.2 Построение
- 4.3 Доказательство
- 4.4 Исследование
- Задачи
- Заключение
- Литература
Введение
Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформулированные основоположником научной геометрической системы Евклидом около 300 г. до н.э., ясно показывают какую роль сыграли геометрические построения в формировании геометрии. «От всякой точки до всякой точки можно провести прямую линию», «Ограниченную прямую можно непрерывно продолжать», «Из всякого центра и всяким раствором может быть описан круг» — эти постулаты Евклида явно указывают на основное положение конструктивных методов в геометрии древних.
Древнегреческие математики считали «истинно геометрическими» лишь построения, производимые лишь циркулем и линейкой, не признавая «законным» использование других средств для решения конструктивных задач. При этом, в соответствии с постулатами Евклида, они рассматривали линейку как неограниченную и одностороннюю, а циркулю приписывалось свойство чертить окружности любых размеров. Задачи на построение циркулем и линейкой и сегодня считаются весьма интересными, и вот уже более ста лет это традиционный материал школьного курса геометрии.
Одной из самых ценных сторон таких задач является то, что они развивают поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также более тщательной обработке умений и навыков. А это в свою очередь усиливает прикладную и политехническую направленность обучения геометрии. Задачи на построение не допускают формального к ним подхода, являются качественно новой ситуацией применения изученных теорем и, таким образом, дают возможность осуществлять проблемное повторение. Такие задачи успешно могут быть связаны с новыми идеями школьного курса геометрии (преобразованиями, векторами).
Геометрические построения могут сыграть серьезную роль в математической подготовке школьника. Ни один вид задач не дает столько материала для развития математической инициативы и логических навыков учащегося, как геометрические задачи на построение. Эти задачи обычно не допускают стандартного подхода к ним и формального восприятия их учащимися. Задачи на построение удобны для закрепления теоретических знаний учащихся по любому разделу школьного курса геометрии. Решая геометрические задачи на построение, учащийся приобретает много полезных чертежных навыков.
В этой курсовой работе будет рассмотрена методика решения задач на построения в стереометрии, а так же роль и место геометрических построений в школьном курсе.
§1. Роль и место геометрических построений в школьном курсе
Задачи на построение — это задачи, в которых требуется построить некоторую геометрическую фигуру по заранее заданным данным с помощью ограниченного набора чертежных инструментов (чаще всего — линейки и циркуля).
Роль задач на построение в школьном курсе:
Она способствует развитию воображения школьников, так как еще до решения данной задачи приходится отчетливо представить искомый образ.
Развивает конструктивные способности учащихся и закрепляют соответствующие чертежные навыки.
Анализ и исследование полученного решения, рассмотрение взаимосвязей между данными и искомыми элементами содействует развитию логического мышления школьников, в частности — мыслительных операций: анализа, синтеза, абстрагирования; пробуждают их инициативу.
Способствует прочному закреплению теоретического материала курса.
Тематическое планирование материала, связанного с геометрическими построениями, предполагает следующее его распределение по этапам:
Ознакомительный этап (1-4 кл.). Здесь школьники впервые знакомятся с чертежными инструментами — линейкой, циркулем, треугольником и решают простейшие задачи на построение прямой, отрезка, окружности, угла.
Пропедевтический этап (5-6 кл.). более значительное внимание к геометрическим построениям подготавливает учащихся к решению более сложных задач систематического курса. Используются линейка, циркуль, транспортир, треугольник. Рассматривается построение параллельных и перпендикулярных прямых с помощью угольника и линейки; треугольника с помощью линейки, циркуля и транспортира; окружности, квадрата, прямоугольника.
Систематический курс геометрии (7-11 кл.).
7 класс. Здесь впервые учащиеся встречаются с основным требованием, предъявляемым к геометрическим чертежам — все построения должны выполняться только при помощи циркуля и линейки. Это требование вытекает из двух постулатов Евклида в «Началах»: а) от всякой точки до всякой точки можно провести прямую; б) из всякого центра любым раствором циркуля можно описать круг. При этом возникает необходимость доказательства того, что построенная фигура удовлетворяет требованиям задачи. В 7 классе учащиеся знакомятся с элементарными задачами на построение, построение окружности, вписанной и описанной около треугольника; кроме того, учащиеся усваивают первый общий метод решения задач на построение — метод геометрических мест (метод пересечений).
8 класс. В теме «Четырехугольники» решаются соответствующие задачи на построение методом геометрических мест; в теме «Движения» — используются все виды движения для решения задач на построение; в теме «Декартовы координаты на плоскости» рассматриваются построения на координатной плоскости (построение прямой, окружности, точек пересечения).
9 класс. В теме «Подобные фигуры» — задачи на построение с использованием гомотетии и преобразования подобия; в теме «Правильные многоугольники» — задачи на построение вписанных и описанных правильных многоугольников.
(10-11 классы). В стереометрии рассматриваются два вида геометрических построений: а) воображаемые построения, основывающиеся только на аксиомах стереометрии (часто используются при решении конструктивных задач типа «Докажите, что через точку вне плоскости можно провести…»; б) построения на проекционном чертеже, когда указываются кроме точек фигуры их проекции на проекционной плоскости.
Процесс решения задач состоит из четырех этапов, с которыми учащиеся знакомятся еще в 7 классе:
1) анализ;
2) построение (синтез);
3) доказательство;
4) исследование.
Не все указанные этапы с самого начала обязательно должны явно присутствовать при решении задач на построение. В простейших конструктивных задачах, где алгоритм построения очевиден, допустимо не проводить анализ задачи в явном виде; если же доказательство непосредственно следует из построения, его можно также опустить (например, при построении в 7-8 классах обычно либо отсутствует, либо ограничивается проверкой выполнимости каждой операции и проведением исследования на нахождение количества решений (если возможно)).
§3. Основы теории геометрических построений
3.1 Общие аксиомы конструктивной геометрии
Фигурой в геометрии называют любую совокупность точек (содержащую по крайней мере одну точку).
Будем предполагать, что в пространстве дана некоторая плоскость, которую назовем основной плоскостью. Ограничимся рассмотрением только таких фигур, которые принадлежат этой плоскости.
Одна фигура называется частью другой фигуры, если каждая точка первой фигуры принадлежит второй фигуре. Так, например, частями прямой будут: всякий, лежащий на ней отрезок, лежащий на этой прямой луч, точка на этой прямой, сама прямая.
Соединением двух или нескольких фигур называется совокупность всех точек, принадлежащих хотя бы одной из этих фигур.
Пересечением или общей частью двух или нескольких фигур, называется совокупность всех точек, которые являются общими для этих фигур.
Разностью двух фигур Ф и Ф называется совокупность всех таких точек фигуры Ф, которые не принадлежат фигуре Ф.
Может оказаться, что пересечение (или разность) двух фигур не содержит ни одной точки. В этом случае говорят, что пересечение (или соответственно разность) данных фигур есть пустое множество точек.
Раздел геометрии, в котором изучаются геометрические построения, называют конструктивной геометрией. Основным понятием конструктивной геометрии является понятие построить геометрическую фигуру.
Если о какой-либо фигуре сказано, что она дана, то при этом естественно подразумевается, что она уже изображена, начерчена, т.е. построена. Таким образом, первое основное требование конструктивной геометрии состоит в следующем:
Каждая данная фигура построена.
Заметим, что не следует смешивать понятия «данная фигура» и «фигура, заданная (или определенная) такими-то данными ее элементами».
Если построены две (или более) фигуры, то построено и соединение этих фигур.
3. Если построены две фигуры, то можно установить, является ли их разность пустым множеством или нет.
4. Если разность двух построенных фигур не является пустым множеством, то эта разность построена.
5. Если две фигуры построены, то можно установить, является ли их пересечение пустым множеством или нет.
6. Если пересечение двух построенных фигур не пусто, то оно построено.
В следующих трех основных требованиях говорится о возможностях построения отдельных точек.
7. Можно построить любое конечное число общих точек двух построенных фигур, если такие точки существуют.
8. Можно построить точку, заведомо принадлежащую построенной фигуре.
9. Можно построить точку, заведомо принадлежащую построенной фигуре.
3.2 Задача на построение
Задачей на построение называется предложение, указывающее, по каким данным, какими инструментами, какую геометрическую фигуру требуется построить (начертить на плоскости) так, чтобы эта фигура удовлетворяла определённым условиям.
Решить задачу на построение с помощью циркуля и линейки — значит свести её к совокупности пяти элементарных построений, которые заранее считаются выполнимыми. Перечислим их.
1. Если построены две точки А и В, то построена прямая АВ, их соединяющая, а также отрезок АВ и любой из лучей АВ и ВА (аксиома линейки).
2. Если построена точка О и отрезок АВ, то построена окружность с центром в точке О и радиусом АВ, а также любая из дуг этой окружности.
3. Если построены две прямые, то построена точка их пересечения (если она существует).
4. Если построена прямая и окружность, то построена любая из точек их пересечения (если она существует).
5. Если построены две окружности, то построена любая из точек их пересечения (если она существует).
Сведение решения каждой задачи к элементарным построениям делает решение громоздким. Поэтому часто решение задачи сводят к так называемым основным построениям. Выбор некоторых построений в качестве основных в известной степени произволен. Например, в качестве основных построений можно рассмотреть следующие задачи: деление данного угла пополам; построение отрезка, равного данному; построение угла, равного данному; построение параллельной прямой, построение перпендикулярной прямой, деление отрезка в данном отношении; построение треугольника по трём сторонам, по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам; построение прямоугольного треугольника по гипотенузе и катету.
Решить задачу на построение — значит найти все её решения.
Последнее определение требует некоторых разъяснений.
Фигуры, удовлетворяющие условию задачи, могут различаться как формой так и размерами, так положением на плоскости. Различия в положении на плоскости принимаются или не принимаются в расчёт в зависимости от формулировки самой задачи на построение, а именно в зависимости от того, предусматривает или не предусматривает условие задачи определённое положение искомой фигуры относительно каких-либо данных фигур. Поясним это примерами.
Рассмотрим следующую простейшую задачу: построить треугольник по трём сторонам и углу между ними. Точный смысл этой задачи состоит в следующем: построить треугольник так, чтобы две стороны его были соответственно равны двум данным отрезкам, а угол между ними был равен данному углу. Здесь искомая фигура (треугольник) связана с данными фигурами (два отрезка и угол) только соотношениями равенства, расположение же искомого треугольника относительно данных фигур безразлично. В этом случае легко построить треугольник, удовлетворяющий условию задачи. Все треугольники, равные этому треугольнику, также удовлетворяют условию поставленной задачи. Однако нет никакого смысла рассматривать эти треугольники как различные решения данной задачи, ибо они отличаются один от другого только положением на плоскости, о чем в условии задачи ничего не сказано. Будем поэтому считать, что задача имеет единственное решение.
Итак, если условие задачи не предусматривает определённого расположения искомой фигуры относительно данных фигур, то условимся искать только все неравные между собой фигуры, удовлетворяющие условию задачи. Можно сказать, что задачи этого рода решаются «с точностью до равенства». Это означает, что задача считается решённой, если:
1) Построено некоторое число неравных между собой фигур Ф1, Ф2, … Фn, удовлетворяющие условиям задачи
2) доказано, что всякая фигура, удовлетворяющая условиям задачи, равна одной из этих фигур. При этом считается, что задача имеет n различных решений.
Если условие задачи предусматривает определённое расположение искомой фигуры относительно какой-либо данной фигуры, то полное решение состоит в построении всех фигур, удовлетворяющих условию задачи (если такие фигуры существуют) в конечном числе.
4.1 Анализ
Анализ — это важный этап решения задачи, который мы понимаем как поиск способа решения задачи на построение. На этом этапе должны быть подмечены такие зависимости между данными фигурами и искомой фигурой, которые позволили бы в дальнейшем построить эту искомую фигуру (если мы знаем, как строить искомую фигуру, то никакой анализ уже не нужен).
Чтобы облегчить себе поиск связей между искомой фигурой и данными фигурами, обычно оказывается выгодным иметь перед глазами вспомогательный чертеж, чертеж-набросок, изображающий данные и искомые фигуры примерно в том расположении, которое предусмотрено условием задачи. Чертеж можно выполнить от руки, на глаз — это проект чертежа, который должен образоваться, когда задача уже решена.
На вспомогательном чертеже следует выделить данные элементы и важнейшие искомые элементы. Практически часто удобнее начинать построение вспомогательного чертежа не с данной фигуры, а с примерного изображения исходной фигуры, пристраивая к ней данные так, чтобы они находились в отношениях, указанны в условии задачи.
Если вспомогательный чертеж не подсказывает способа построения искомой фигуры, то пытаются обнаружить какую-либо часть искомой фигуры или вообще некоторую фигуру, которая может быть построена, и которой затем можно воспользоваться для построения искомой фигуры.
Учитываются следующие моменты:
1) если на вспомогательном чертеже не удается непосредственно заметить необходимые для решения связи между данными и искомыми элементами, то целесообразно ввести в чертеж вспомогательные фигуры: соединить уже имеющиеся точки прямыми, отметить точки пересечения имеющихся линий, продолжить некоторые отрезки и т. д. Иногда бывает полезно проводить параллели или перпендикуляры к уже имеющимся прямым;
2) если по условию задачи дана сумма или разность отрезков или углов, то эти величины следует ввести в чертеж, то есть следует изобразить их на чертеже-наброске, если их еще нет на нем;
3) в процессе проведения анализа бывает полезно вспомнить теоремы и ранее решенные задачи, в которых встречаются зависимости между элементами, о которых говорится в условии рассматриваемой задачи.
В Приложении 3 приведен анализ задачи на построение: “Построить треугольник, зная основание, меньший угол при основании и разность двух других сторон”.
Из данного примера видно, что при отыскании решения задачи на построение, как и для арифметических задач, применяется аналитико-синтетический метод. Следуя от вопроса задачи, учитываем, какие элементы нам известны, и, наоборот, исходные данные комбинируем так, чтобы построить искомую фигуру.
Название этапа “анализ” не означает, что для отыскания решения применяется только аналитический метод, подобно тому, как и при доказательстве, которое иногда называют “синтезом”, не всегда применяется синтетический метод рассуждения. При разборе задачи, при отыскании путей ее решения анализ и синтез находятся в постоянном взаимодействии, дополняют и проверяют друг друга.
Вернемся к нашей задачи и проведем ее анализ.
Анализ:
1. Найдем точку S’1, в которой пересекаются лежащие в проектирующей плоскости AA’B прямые AB и A’B’, точку S’2, в которой пересекаются прямые AC и A’C’, и точку S’3, в которой пересекаются прямые AD и A’D’.
2. В плоскости AS’1S’3 построим прямую проходящую через точку D, параллельно прямой AS1 и в плоскости AS’2S’3 проходящую через точку D, параллельно прямой AS’2.
3. Через полученные прямые строим искомую плоскость.
4.2 Построение
Второй этап решения задач на построение состоит из двух частей:
1) перечисление в определенном порядке всех элементарных построений, которые нужно выполнить, согласно анализу, для решения задачи;
2) непосредственное выполнение этих построений на чертеже при помощи чертежных инструментов. Действительно, решить задачу с помощью тех или иных инструментов — значит указать конечную совокупность элементарных, допустимых для данных инструментов, построений, выполнение которых в определенной последовательности позволяет дать ответ на вопрос задачи.
Данный этап вводится при решении самой первой задачи на построение, которой обычно является задача о построении отрезка, равного данному, на данном луче с концом в начале этого луча. В беседе, сопровождающей введение этапа, необходимо отметить, в чем состоит решение любой задачи на построение и указать, что осуществление этого этапа как раз и состоит в перечислении конечного числа операций построения искомой фигуры.
Вернемся к нашей задаче и рассмотрим ее построение.
Построение:
1. AB?A’B’=S’1
2. AC?A’C’= S’2
3. AD?A’D’=S’3
4. DS’4¦AS’1
5. DS’5¦AS’2
6. DS’4S’5
4.3 Доказательство
После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям.
При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: “Построить треугольник по двум сторонам и углу между ними”. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.
Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.
Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое различие. При доказательстве теорем в большинстве случаев без труда выделяют условие и заключение. При решении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении конструктивных задач в классе целесообразно иногда специально выделять, что дано, и что требуется доказать. Например, при решении задачи: “Построить ромб по двум его диагоналям” предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). В свою очередь при решении задач дома и в контрольных работах можно не требовать оформления доказательства с выделением отдельно условия и заключения. Нет надобности требовать проведения особого доказательства в задачах, где правильность решения очевидна.
Вернемся к нашей задаче и рассмотрим ее доказательство.
Доказательство: прямые DS4 и DS5 проходят через точку D и параллельны плоскости ABC по построению.
4.4 Исследование
При построении обычно ограничиваются отысканием одного какого-либо решения, причем предполагается, что все шаги построения действительно выполнимы. Для полного решения задачи нужно еще выяснить следующие вопросы: 1) всегда ли (то есть при любом ли выборе данных) можно выполнить построение избранным способом; 2) можно ли и как построить искомую фигуру, если избранный способ нельзя применить; 3) сколько решений имеет задача при каждом возможном выборе данных? Рассмотрение всех этих вопросов и составляет содержание исследования.
Таким образом, исследование имеет целью установить условия разрешимости и определить число решений. Нередко школьники и даже учителя проводят исследование, произвольно выбирая те или иные случаи, причем неясно, почему рассматриваются именно такие, а не какие-либо иные случаи. Остается неясным также, все ли возможные случаи рассмотрены. Практически в большинстве случаев удается достигнуть необходимой полноты исследования, если проводить это исследование по ходу построения, что является наиболее доступным и целесообразным способом. Сущность этого приема состоит в том, чтобы перебрать последовательно все шаги, из которых слагается построение, и относительно каждого шага установить, всегда ли указанное на этом шаге построение выполнимо, а если выполнимо, то однозначно ли.
Рассмотрим исследование нашей задачи.
Исследование: данная задачи имеет решение и при том только одно, т. к. параллельно данной плоскости и не лежащую на ней прямой можно провести только одну плоскость.
Задачи
Задача №1.
Дано: SABCD-пирамида, PSB, KSC, MSA.
Построить: Сечение SABCD плоскостью МКР
Решение: Поскольку точки М, К и Р лежат на боковых ребрах пирамиды, то сразу можно построить две стороны сечения МР
Р К
М В С
О Н
А D
и РК. После этого надо найти точку Н пересечения секущей плоскости с ребром SD.
Так как проекцией МК на плоскость (АВС) является прямая АС, а проекцией РН (где точка Н пока неизвестна, но знаем, что она лежит на ребре SD) на плоскость (АВС) является прямая ВD, то точка их пересечения О будет проекцией точки О1 на прямой МК.
Теперь в плоскости (ВSD) мы имеем две точки секущей плоскости: О1 и Р. Значит, искомая на ребре SD точка Н будет точкой пересечения ребра SD и прямой РО1.
Точка найдена, последние две стороны сечения МН и НК легко построить. Таким образом, МКРН — искомое сечение.
Задача №2
Дано: Построить сечение призмы ABCDA1B1C1D1 — призма, PAA1, QBB1,RCC1
Найти: сечение ABCDA1B1C1D1 плоскостью проходящей через точки P, Q, R
Решение: Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ. Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу. Аналогично получаем точку S2 пересечением прямых QR и BC. Прямая S1S2 — след секущей плоскости на плоскость нижнего основания призмы. Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT. PQRTU — искомое сечение.
Задача №3
Дано: Построить сечение призмы ABCDA1B1C1D1 — призма, MA1B1, NAD, PDC
Найти: Сечение ABCDA1B1C1D1 плоскостью проходящей через точки M, N, P
Решение: Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда. Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения. Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х. Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN. Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y. Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение — MYZPNX.
Так же задачи на построение сечений можно решать в программе «Живая Геометрия».
Задача 4.
Дано: ABCDA1B1C1D1-параллепипед, P CC1D1D, Q AA1D1D, R BB1. Построить: сечение ABCDA1B1C1D1 плоскостью PQR.
Решение:
Задача 5.
Дано :Точки P, Q и R взяты на поверхности параллелепипеда ABCDA1B1C1D1 следующим образом: точка P лежит на грани CC1D1D, точка Q — на ребре B1C1, а точка R — на ребре AA1.
Построить: сечение параллелепипеда плоскостью (PQR).
Решение:
Задача 6.
Дано: На рёбрах A1B1 и DD1 параллелепипеда ABCDA1B1C1D1 взяты соответственно точки P и S, а в гранях DD1C1C и AA1D1D соответственно точки Q и R.
Построить: сечение параллелепипеда плоскостью, проходящей через точку S параллельно плоскости PQR.
Решение:
3. Самостоятельное решение задач
Каждый ученик получает карточку с заданием. На этом же листе выполняется построение сечения и описание этого построения. Проверку заданий можно осуществить на уроке в УМК «Математика, 5-11 классы. Практикум»
Задание1-7: построить сечение, проходящее через точки M,K,L.
Задание 8: построить сечение, проходящее через точку P и прямую KL.
Задание 9: построить сечение, проходящее через точку K и прямую PQ.
Задание 1 |
Задание 2 |
Задание 3 |
Задание 4 |
|
Задание 5 |
Задание 6 |
Задание 7 |
Задание 8 |
|
Задание 9 |
Решения заданий в УМК «Математика, 5-11 классы. Практикум»
Заключение
Систематическое изучение геометрических построений необходимо в школьном курсе, так как в процессе изучения задач они концентрируют в себе знания из других областей математики, развивают навыки практической графики, формируют поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также к более тщательной обработке умений и навыков.
В этой курсовой работе были рассмотрены роль и место построений в школьном курсе, а так же была рассмотрена методика решения задач на построение в стереометрии и основные геометрические построения.
Литература
стереометрия геометрическое посторенние
1. Александров, И.И. Сборник геометрических задач на построение с решениями / И.И.Александров. — М.: Учпедгиз,1954.
2. Аргунов, Б.И. Элементарная геометрия: учеб. пособие для пед. ин-тов / Б.И. Аргунов, М.Б. Балк. — М.: Просвещение, 1966.
3. Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. — Киров: Изд-во ВятГГУ, 2008. — С. 59-69.
4. Мисюркеев, И.В. Геометрические построения. Пособие для учителей / И.В.Мисюркеев. — М: Учпедгиз, 1950.
5. Понарин, Я.П. Элементарная геометрия: В 2 т. — Т.2: Стереометрия, преобразования пространства / Я.П.Понарин — М.: МЦНМО, 2006.
6. Прасолов, В.В. Задачи по стереометрии. Ч.1 / В.В. Прасолов. — М.: Наука, 1991.
7. Саранцев, Г.И. Обучение математическим доказательствам и опровержениям в школе / Г.И. Саранцев. — М.: ВЛАДОС, 2005.