Выдержка из текста работы
«Методы определения температуры жилых, общественных и производственных помещений» (для студентов лечебного, педиатрического, медико-профилактического, фармацевтического и стоматологического факультетов и факультета МВСО)
Казань – 1999
- Тема: методы определения температуры воздуха жилых, общественных и производственных помещений. Продолжительность занятия — 2 часа.
- Цель занятия:
- научить студентов исследовать и давать гигиеническую опенку температурного режима помещений различного назначения;
- воспитать у студентов тщательность и последовательность в выполнении рабочего задания, грамотность при проведении инструментального исследования.
- Задачи занятия:
- опираясь на знания, полученные студентами на кафедрах нормальной физиологии, физики, биохимии и лекциях по гигиене» закрепить и углубить знания о видах и механизмах терморегуляции организма, о влиянии температуры воздуха на организм здорового и больного человека;
- научить определять инструментально температуру воздуха;
- научить студентов пользоваться официальными документами при опенке температурного режима воздуха помещений: СНиП по отоплению, вентиляции и кондиционированию воздуха, СНиП «Общественные здания и сооружения», санитарные нормы микроклимата производственных помещений.
- Но данной теме студент должен знать:
- теорию терморегуляции организма и принципы нормирования температуры воздуха помещений;
- Студент должен уметь:
- определять температуру воздуха аспирационным психрометром» термометром, термографам, максимальным и минимальным термометрами, поверхности тела электротермометром;
- давать гигиеническую оценку температурного режима помещений различного назначения.
Место проведения занятия:
учебная комната на кафедре обшей гигиены.
- Хронологическая карта занятия:
- вводная часть — 3 мин
- контроль исходного уровня знаний, устно — 7 мин
- самостоятельная работа студентов с приборами, литературой и таблицами — 60 мин
- самоконтроль усвоения материала и готовности к выполнению инструментальных замеров по приложению №2;
- при необходимости обратиться к приложению №1, где изложена информация по данной теме из различных источников;
- измерить температуру воздуха учебной комнаты сухим термометром психрометра Ассмана по горизонтали и вертикали;
- измерить температуру воздуха и поверхности тела человека минимальными и максимальными термометрами и электротермометрами;
- изучить устройство и работу термографа;
- оформить полученные данные в лабораторных журналах по схеме, представленной в «Руководстве к лабораторным занятиям по обшей гигиене» Румянцева Г.И. и соавт., 1980, с.47-48.
- Выборочный разбор итогов самостоятельной работы — 10 мин.
- Контроль знаний и умений, полученных но теме занятия письменно — 5 мин.
- Подведение итогов занятия — 5 мин.
- Оснащение занятия:
- Методические указания к лабораторному занятию.
- Румянцев Г.И. и соавт.: «Руководство к лабораторным занятиям но обшей, гигиене», М., I960.
- СНиН 11-33-75, часть 11, глава 33 «Отопление, вентиляция и кондиционирование воздуха».
- Психрометры Ассмана.
- Термометры: минимальные, максимальные, электрические.
- Термографы.
- Таблицы: «Температура поверхности тела человека», «Температурные шкалы».
Рекомендуемая литература:
- Минх Л.Л. Методы гигиенических исследований, М., «Медицина», 1976.
- Минх А,А. Общая гигиена, М., «Медицина», 1964.
- Румянцев Г.И. и соавт. «Руководство к практическим занятиям по обшей гигиене», М., «Медицина», 1986.
- Руководство по Физиологии труда, под. ред. Золиной Э.Я., Измерова Н.Ф., М., «Медицина», 1983.
- Гомеостаз, под.ред. Горизонтова Б.Д., М., «Медицина», 1981.
- Справочник т.1 «Реакции организма человека на воздействие опасных и вредных производственных факторов» (Метрологические аспекты), М., «Изд-во стандартов», с. 113-126.
Приложение I
МЕХАНИЗМ ТЕРМОРЕГУЛЯЦИИ ОРГАНИЗМА
К физическим свойствам воздуха, опушаемым человеком постоянно и действующим на организм в широком диапазоне, относятся его тепловое состояние, показателем которого является его температура.
За долгий период эволюции человеческий организм совершенство-зал механизмы адаптации к изменениям температуры воздуха и все же пределы приспособляемости человека к теплу и холоду, особенно при длительных воздействиях, ограничены. Мы расширяем границы за счет применения одежды и жилишь.
Температурный фактор не столь прост, как кажется на первый взгляд. Различают оптимальные, максимальные, минимальные температуры, соответствующие определенному тепловому состоянию воздуха, который может нагревать или охлаждать организм человека. Тепло или холод могут действовать на человека как на ограниченном участке (местно), так и на весь организм (общее). Реакции организма на все эти разновидности теплового воздействия существенно различаются, , Адаптация человека к новому воздействию достаточно сложный промесс, включающий реакции, осуществляемые на репенторпом, рефлекторном, терморегуляторном и обменном уровнях с вовлечением нервной, сердечно-сосудистой, мышечной, дыхательной и .других систем организма. Однако ведущая роль в этом процессе принадлежит нервной системе и обменным процессам.
Тепловое состояние организма влияет на все органы и системы и определяет функциональные возможности человека, его здоровье.
Под тепловым состоянием человека понимают такое функциональное состояние организма, которое обусловлено термической нагрузкой и характеризуется содержанием и распределением тепла в глубоких («ядро») и поверхностных («оболочка») тканях тела, а также различной степенью напряжения механизмов терморегуляции.
В норме у человека температура мозга, крови и внутренних органов, так называемого «ядра» по И.П.Павлову, равняется 37°±1,5° С. Изменение температуры «ядра» на 2°С и более от среднего уровня приводит к нарушениям физиологических функций. Предполагают, что температура тела поддерживается около 38°С, поскольку именно при этой температуре обеспечиваются наилучшие условия функционирования возбудимых мембран. Термические условия среды есть наиболее важное и адекватное условие поддержания температурного гомеостаза организма, согласно современным представлениям , тепловой гомеостаз — не жесткая фиксация тех или иных показателей на определенном уровне, а скорее их колебания вокруг среднего значения. Отсюда исходит важность и актуальность знания температурных условий в помещениях жилых и общественных зданий и правильность нормирования температуры.
О тепловом состоянии человека судят по его теплошущениям и объективным показателям: температуре тела («ядра») и кожи («оболочки»), топографии температуры кожи, влагопотерям, кардиореспираторным показателям (частоте сердечных сокращений, АД, величине легочной вентиляции).
Рассмотрим теплообмен организма с внешней средой.
Теплообмен организма связан, с теплопродукцией и теплоотдачей и осуществляется процессами химической (т.е. регуляции теплопродукции) и физической теплорегуляции (т.е. регуляции теплоотдачи). В условиях температурного комфорта величина продукции тепла в организме равна величине отдачи тепла организмом во внешнюю среду различными путями.
Химическая терморегуляция определяется способностью организма изменять интенсивность его обменных процессов. Охлаждение организма при падении температуры воздуха в состоянии покоя ниже 15°С может повысить обмен на 10-20% и более, умеренное согревание может снизить обмен на 3-5%. Выраженное действие нагревающего микроклимата дезорганизует теплорегуляцию, способствует повышению обмена, иногда на несколько десятков процентов, вызывает возбуждение центральной нервной системы и соответствующие изменения во всем организме (см. таблицу «Изменение обмена веществ в зависимости от температуры воздуха»).
Источником теплорегуляции продукции служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов прежде всего углеводов, жиров, а также в критических ситуациях белков энергия, аккумулируемая в макроэргических соединениях (АТФ, креатинфосфат, гуанидинтрифосфат), рассеивается в виде тепла («первичная теплота»), либо превращается в те или иные виды работы (синтез белков, липидов и полисахаридов, осмотическая работа в метках и т.д.) , в конечном счете также переходит в тепловую энергию (КПД многих видов работы очень низок: КПД синтеза белка 10-13%, транспорта ионов – 20%, синтеза АТФ -30%). Остальная энергия превращается во вторичное тепло. Основное тепло организм получает в результате осуществления тех или иных видов работу (т.е. 70% тепла в организме за счет «вторичной теплоты», в то время как теплорассеиванием — лишь 33%).
В условиях нормальной жизнедеятельности в покое наиболее высокий вклад (58,8%) в теплопродукцию обеспечивается печенью, мозгом и в меньшей степени скелетными мышцами интенсивность обмена в покоящихся мышцах невелика, однако значительна масса мышечной ткани. При совершении мышечной работы энергообмен в мышцах резко возрастает. Выработка тепла (теплопродукции) является первичным процессом в тепловом обмене и теплорегуляции. В регуляции теплового обмена (баланса) в организме существенную роль играет физическая теплорегуляция, т.е. регуляция путем изменения теплоотдачи. В основном физическая терморегуляция является сосудистой и состоит в изменении кровенаполнения кожи и скорости кровотока через кожу путем изменения тонуса сосудов. У человека максимальное расширение сосудов кожи от состояния максимального сужения уменьшает обшую величину теплоизоляции поверхности тела в среднем в 6 раз.
Отдача тепла происходит:
1. испарением с поверхности дыхательных путей и с поверхности кожи;
2. мочой и калом;
3. с поверхности тела путем кондукции, конвекции, радиации.
Строго говоря, лишь испарение с поверхности дыхательных нугой и кожи может рассматриваться как теплоотдача в чистом виде, в то время как теплоотдача с кожи путем конвекции (т.е. путем движения вверх нагретых слоев воздуха, прилегающих к телу), радиацией(т.е. излучением за счет разности температуры тела и окружающей среды), кондукцией (т.е. проведением за счет разности температуры поверхности тела и соприкасающихся с ним поверхностей могут иметь и положительный и отрицательный знак, т.е. явиться и путями накопления тепла в организме (в зависимости от термических соотношении между организмом и внешней средой). Когда температура среды будет выше температуры поверхности тела, пути конвекции, радиации и проведения из факторов теплоотдачи превращаются в факторы тепловой нагрузки.
Не все участки поверхности кожи равноценно участвуют в физической теплорегуляции. Особое значение имеют кисти рук. От них может быть отведено до 60% теплопродукции основного обмена (как известно, основным обменом называют уровень, измеренный утром, при положении обследуемого липа лежа, натощак и в условиях: возможно наиболее полноценного физического и психического покоя), хотя площадь кистей составляет всего около 6% от обшей поверхности кожного покрова. При мышечной работе особое значение приобретают участки кожи под, работающими мышцами.
По мере приближения температуры окружающей среды к температуре тела эффективность сосудистой терморегуляции падает и в действие вступает другая форма физической терморегуляции — потоиспарение. Процесс просачивания воды через эпителий и последующего ее .испарения носит название неощутимой перспирации. За счет этого процесса происходит отдача примерно 20% тепла, выделяемого при основном обмене. Неощутимая перспирация не регулируется и мало зависит от температуры окружающей среды. Поэтому при угрозе перегревания симпатическая нервная система стимулирует работу потовых желез в коже. При интенсивном функционировании потовых желез выделяется 1,5-2 л пота в час и более. Если учесть, что для испарения 1 г воды с поверхности кожи затрачивается 0,58 ккал, то при максимальном потоиспареиии от тела будет отводиться около 900 ккал в час, что достаточно дли поддержания нормальной температуры тела при довольно тяжелой работе в условиях повышенной температуры окружающей среди, однако в этом случае необходима невысокая влажность воздуха, при влажности выше 80%, нотоисиареине затрудняется.
При понижении температуры окружающей среды и угрозе охлаждения правде всего прекращается потоотделение и происходит сужение сосудов кожи. Коли температура кожи продолжает падать и угроза охлаждения не устраняется — изменяется теплопродукция (химическая терморегуляция).
Согласно «закону охлаждения» Ньютона, удельная теплоотдача многими путями прямо пропорциональна разности температур «теплосреда» и обратно — сумме теплоизоляции среды и тепла. Кроме того, теплопотери зависят от соотношения поверхности и массы тела, чем крупнее тело, тем оба вида теплового обмена становятся меньше.
Важным условием теплового баланса служат оптимальные показатели других физических свойств воздуха — скорости движения воздуха, омывающего тело, или части его (быстрое удаление нагретого слоя воздуха поддерживает разность температур тела и воздуха на высоком уровне), а также влажности воздуха (при высокой влажности уменьшается отдача тепла путем испарения). Существенную роль играет величина инсоляции. Есть данные о том, что при достаточной величине инсоляции человек, одетый в совершенно прозрачную для солнечных лучей одежду, чувствует себя комфортно даже при температуре -18°С.
ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ВОЗДУХА
В настоящее время температуру измеряют термометрами нескольких типов. Используемые для измерения температуры воздуха термометры должны иметь погрешность не более ±0,2°С. Самые распространенные термометры — жидкостно-стеклянные. В таких термометрах жидкость — ртуть или спирт — заключена в тонкую стеклянную трубку (капилляр). Когда изменение температуры заставляет жидкость расширяться и сжиматься, уровень ее в капилляре повышается или понижается пропорционально изменению температуры, что можно заметить с помощью шкалы, прикрепленной к капилляру.
Ртутные термометры более точные, т.к. расширение и сжимание ртути происходит равномерно, и применять их можно в пределах от -35° до 357°С. Спиртовые термометры недостаточно точные. Точка кипения спирта около 78°С. Однако спиртовыми термометрами можно измерить низкие температуры до -130°С, кроме того спиртовые термометры безопасны. Биметаллический термометр состоит из двух различных металлов, скрепленных вместе в виде одной тонкой пластинки. Реагируя на изменение температуры, пластинка изгибается, в ту сторону, на которой находится металл, расширяющийся слабее. Степень искривления пластинки, положение которой зависит от температуры, отмечается па заранее отградуированной шкале с помощью стрелки.
В электрических термометрах для измерения температуры используется электрический ток. При изменении температуры того или иного проводника меняется его электрическое сопротивление. На сегодняшний день серийно выпускается медицинский электротермометр ТПЭМ-1.
Шкалы современных термометров привязываются к двум реперным точкам. Наиболее широко используются точки таяния льда и кипения воды при нормальном барометрическом давлении. Эти две точки фиксируются раз и навсегда, а расположенный между ними интервал делится на то или иное число градусов.
В настоящее время наиболее распространена стоградусная шкала Цельсия, на этой шкале точка таяния льда отвечает 0°, а точка кипения воды — 100°. Интервал между этими точками но шкале Цельсия разделен на 100°.
Однако в США и Великобритании продолжают пользоваться шкалой Фаренгейта, точка таяния льда соответствует 32°, а точка кипения воды — 212°. Интервал между этими двумя точками разделен на 180 делений. Температура по Фаренгейту и температура по Цельсию связаны зависимостью:
С°= 5/9(F° — 32°) F° = 5/9С° + 32°
Термометры проверяют или путем сравнения их с так называемым нормальным термометром, точность которого гарантируется специальным свидетельством, или но точке таяния льда и точке кипения воды с поправкой на атмосферное давление (по таблице).
Наиболее часто в гигиенических исследованиях для определения температуры воздуха используется сухой термометр аспирационного психрометра. Существенным недостатком аспирационных психрометров с ртутными термометрами являются их сравнительно высокая инерционность (отдельное измерение занимает 3-5 мин), а также невозможность одномоментных измерений в ряде намеченных точек помещения. Если вместо ртутных термометров используются полупроводниковые термометры из германия, инерция которых не превышает нескольких секунд, то одновременно можно измерять в нескольких точках, где будут устанавливаться датчики.
В тех случаях, когда необходимо определить максимальные и минимальные температуры, которые были на протяжении какого-либо отрезка времени, применят’ специальные термометры.
Максимальный термометр служит для определения максимальной температуры за период наблюдения. Он представляет собой прибор, в котором столбик ртути в капилляре поддерживается на таком уровне, на котором он был при наивысшей температуре воздуха, наблюдавшейся за определенный период. Небольшое сужение в капилляре не позволяет столбику ртути опускаться, когда начинается понижение температуры. При повышении температуры воздуха ртуть свободно проходит через это сужение. При понижении же температуры воздуха ртуть сжимается. Столбик ее в узком месте разрывается, и отчет по шкале термометра остается таким, каким он был в момент наивысшей температуры.
Минимальный термометр фиксирует минимальную температуру за исследуемый период. Он может быть спиртовым и ртутным. Более распространен спиртовый минимальный термометр. Внутри капиллярной трубки, в спирту, небольшой подвижный штифт из темного стекла, имеющий на концах утолщение. Перед наблюдением поднимают нижний конец термометра несколько кверху, поэтому штифт под влиянием собственной тяжести падает вниз до мениска спирта. Затем термометр устанавливают в рабочее для специальных термометров положение — горизонтально. При повышении температуры спирт, расширяясь, свободно проходит мимо штифта, не сдвигая его с места; сила трения головок штифта о стенки капилляра вполне достаточна, чтобы удержать его на месте. Иная картина наблюдается при понижении температуры, когда столбик спирта уменьшается и поверхностная пленка увлекает за собой штифт вниз, к резервуару, и устанавливает его в положении, соответствующем минимуму наблюдавшейся температура. В последнем случае сила трения головок штифта о стенки капилляра 6улег меньше силы сопротивления поверхности пленки, чем и обуславливается передвижение штифта к резервуару. Отчет температуры производят по концу штифта, наиболее удаленному от резервуара.
Для непрерывной регистрации температуры за определенный отрезок времени применяется термограф — самопишущий термометр. Существует две разновидности термографов: в одних термографах воспринимающей частью служит биметаллическая пластинка (принцип ее работы изложен выше), в других — плоская изогнутая трубка, наполненная жидкостью, чувствительной к изменению температуры (например, толуол). Эти изменения передаются стрелке с пером, которое поднимается или опускается и, таким образом, на ленте барабана получается непрерывная запись температуры в виде кривой. Показания термографов периодически проверяют по точному ртутному термометру. Перо в начале работы устанавливается на уровне той температуры, которую показывает в данный момент контрольный термометр.
Различают истинную температуру воздуха (показывает температуру без воздействия на термометр тепловой радиации, а на улице и других метеофакторов), и климатическую температуру (показывает суммарное значение температуры воздуха и влияния тепловой радиации на термометр). Для гигиенической характеристики условий труда в некоторых производствах в горячих цехах и профилактики перегревания имеют значения оба показателя. Для измерения температуры воздуха (истинной) источник радиации необходимо экранировать.
С целью выявления перепадов температур в помещении изучают температурный режим. Для измерения колебаний температуры по горизонтали измеряют на расстоянии 0,2 м от каждой из стен, окон и дверей я в середине комнаты (перепад не должен быть более 2°С), а для выявления колебаний температур по вертикали — на различных уровнях – 0,1; 1,0; 1,5 м от пола (перепад не должен быть более 2,5°С). Все написанное относится к жилым помещениям.
В производственных помещениях перепады температуры воздуха по высоте рабочей зоны при всех категориях работ допускается до 3°С, по горизонтали, а также в течение смены — до 4°С — при легких работах, — до 5°С — при работах средней тяжести и до 6°С — при тяжелых работах.
Чтобы получить среднюю температуру воздуха в помещениях, измерения проводят в различных местах около окон, дверей, у пола и т.д. Затем показания термометров суммируют и делят на количество измерений. Среднесуточную температуру получают из измерений, выполненных утром, днем, вечером и ночью.
ВЫПИСКА
из «САНИТАРНЫХ НОРМ МИКРОКЛИМАТА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ» М., 1986, раздел
Требования к методам измерения и контроля показателей микроклимата
Измерения показателей микроклимата должны проводиться в начале, середине и конце холодного и теплого периода года не менее 3 раз в смену (в начале, середине и конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, измерения необходимо проводить также при наибольших и наименьших величинах термических нагрузок на работающих, имеющих место в течение рабочей смены.
Температуру, относительную влажность и скорость движения воздуха измеряют на высоте 1,0 м от пола или рабочей площадки при работах, выполняемых сидя, и на высоте 1,5 м — при работах, выполняемых стоя. Измерения проводят как на постоянных, так и на непостоянных рабочих местах при их минимальном и максимальном удалении от источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т.д.).
Основные пришиты гигиенического нормирования температуры воздуха в производственных и жилых помещениях следующие:
- необходимо учитывать назначение помещения — для продолжительного или кратковременного пребывания людей, уровень энергозатрат людей, находящихся в помещении (различают состояние покоя, работы — легкой, средней, тяжелой) и уровень теплозащитных свойств одежды;
- учитывается время года — теплый (среднесуточная температура наружного воздуха выше +10°C) или холодный (среднесуточная температура наружного воздуха ниже +10°С) период;
- учитывается климатическая зона;
- должна бить дифференциация допустимых параметров температуры в отношении различных возрастных груши
Оптимальные температурные параметры в жилых и производственных помещениях приведены в «Строительных нормах и правилах СНиП и в «Санитарных нормах микроклимата производственных помещений», М., Минздрав СССР, 1986.
ВЫПИСКА
из СНиП 2.08.02.89 «ОБЩЕСТВЕННЫЕ ЗДАНИЯ И СООРУЖЕНИЯ»
Помещения |
Расчетная температура воздуха, °С |
Палаты для взрослых больных, помещений для матерей детских отделений, помещения гипотерапии |
20 |
Палаты для туберкулезных больных взрослых, детей |
20 |
Палаты для больных гипотиреозом |
24 |
Палаты для больных тиреотоксикозом |
15 |
Послеоперационные палаты, реанимационные залы, палаты интенсивной терапии, родовые, боксы, операционные, операционно-диализационные, наркозные, палаты на 1-2 койки ют ожоговых больных, барокамеры |
22 |
Послеродовые палаты |
22 |
Палаты на 2-4 койки для ожоговых больных, палаты для детей |
22 |
Палаты для недоношенных, грудных, новорожденных и травмированных детей |
25 |
Боксы, полубоксы, фильтр-боксы, предбоксы |
22 |
Систематическое напряжение механизмов терморегуляции при воздействии неблагоприятного микроклимата вызывает угнетение естественного иммунитета, способствует повышению уровня заболеваемости, более раннему ухудшению физического состояния рабочих. Следовательно, необходим постоянный контроль за микроклиматом.