Выдержка из текста работы
Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем — это одно наблюдение.
b) Академический ранг (ассистент, доцент, профессор) как мера продвижения по службе.
В данном случае имеет место употребление порядковой шкалы. Порядковая шкала — это шкала, классифицирующая по принципу «больше — меньше».
Если в шкале наименований было безразлично, в каком порядке расположены классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки «самое малое значение» к ячейке «самое большое значение» (или наоборот).
Это полностью упорядоченная шкала наименований, она устанавливает отношения равенства между явлениями в каждом классе и отношения последовательности в понятиях больше, меньше между всеми без исключения классами.
Упорядоченные номинальные шкалы общеупотребимы при опросах общественного мнения. С их помощью измеряют интенсивность оценок каких-то психологических свойств, суждений, событий, степени согласия или несогласия с предложенными утверждениями. Весьма часто употребляемая разновидность шкал этого типа — ранговые1. Титкова Л. С., Математические методы в психологии/ Л. С. Титкова.- Владивосток: Издательство ДВГУ, 2002.- с. 12.. Они предполагают полное упорядочение каких-то объектов.
с) Числа, показывающие выраженность экстра — интраверсии, нейротизма, психотизма, полученные по методике PEN Г. и С. Айзенк.
Интервальная шкала — это шкала, классифицирующая по принципу «больше на определенное количество единиц — меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии2 Там же, с. 12.
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля)3 Там же, с. 12.
d) Метрическая система измерения расстояний.
В данном случае также имеет место интервальная шкала.
Интервальная шкала — это шкала, классифицирующая по принципу «больше на определенное количество единиц — меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).
e) Номера истории болезни.
Эти числа по типу измерений относятся к номинальной шкале.
Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем — это одно наблюдение.
f) Латентный период решения перцептивной задачи.
В данном случае также имеет место интервальная шкала.
Интервальная шкала — это шкала, классифицирующая по принципу «больше на определенное количество единиц — меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).
Задание №2
В результате исследования понимания прочитанного у учащихся 7-х,
8-х и 9-х классов были получены следующие распределения тестовых оценок:
Интервал оценок Хi |
7 класс (N=29) |
8 класс (N=37) |
9 класс (N=36) |
|
fi |
fi |
fi |
||
200-219 |
— |
— |
3 |
|
180-199 |
1 |
4 |
5 |
|
160-179 |
3 |
3 |
7 |
|
140-159 |
4 |
9 |
7 |
|
120-139 |
11 |
7 |
11 |
|
100-119 |
4 |
7 |
2 |
|
80-99 |
4 |
2 |
1 |
|
60-79 |
1 |
3 |
— |
|
40-59 |
— |
1 |
— |
|
20-39 |
1 |
1 |
— |
Необходимо:
1. Определить меры положения для каждого распределения.
2. Построив по приведенным данным полигоны частот дифференциального и интегрального распределений для каждого класса, решить, какой из двух типов графиков нагляднее отражает различия между распределениями оценок в каждом классе.
Решение:
1. Первый столбец интервал оценок, остальные — балл за выраженность качества (реализована шкала интервалов).
При распределении испытуемых по классам в один класс попадают сильно различающиеся по первичным оценкам испытуемые. Мы рассмотрели различные приемы перевода качественных психологических признаков в количественные выражения. Следует отметить, что при описании психологических явлений необходимо всегда отдавать себе отчет в том, какая именно шкала используется, поскольку каждый способ обработки экспериментальных данных рассчитан на определенный тип шкал.
Применение математических методов к неадекватным данным приводит к странным, а часто и ложным результатам. Квантификация сложных и далеко не однозначных психологических характеристик накладывает немало ограничений на математические операции с их измерениями.
Математик работает с простыми числами, психолог обязан помнить, что в действительности скрывается за величинами, которыми он оперирует.
1) Первое ограничение — соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.
2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).
Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.
II. Используя понятия интегральной функции распределения и определенного интеграла можно записать
(x) = F (x) или F (x) = p (x1 < X < x2) = .
Если определяет заштрихованную область в соответствующих пределах, то
p (х Х х х) (х) х.
Это соотношение можно представить в виде простого геометрического толкования для каждого класса.
Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе
Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе
Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.
Для дискретной случайной величины справедливо следующее равенство:
F (x) = P (X x) = P ( X x) = ,
где суммирование распространяется на хi х.
В промежутке между двумя последовательными значениями Х функция F (х) постоянна. При переходе аргумента х через значение хi F (х) скачком возрастает на величину p (Х хi).
Рассмотрим p (х1 Х х2). Если х2 х1, то очевидно, что
p (Х х2) p (Х х1) p (х1 Х х2).
Тогда
p (х1 Х х2) p (Х х2) p (Х х1) F (х2) F (х1),
т.е. вероятность попадания случайной величины в интервал х1 х2) равен разности значений интегральной функции граничных точек.
Последнее условие можно использовать для нахождения вероятности p (Х х1) для непрерывной случайной величины. Для этого рассмотрим предел
p (X = x1) = ,
т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.
Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х х1 (где х1 заранее выбранное число) равна нулю, это событие не является невозможным.
В этой связи невозможно построение графика интегрального распределения поэтому нами будет построена кривая интегрального распределения для 7,8, 9 классов.
Рис. 4 График интегрального распределения результатов техники чтения для 7,8, 9 класса.
Таким образом, можно сделать следующий вывод, что наиболее достоверна дифференциальное распределение полученных результатов.
Задание №3.
Выборка объемом 30 человек, разбитая на две равные группы по признаку пола, прошла функциональную диагностику мозговой активности, в результате которой у 13 женщин и 4 мужчин было выявлено доминирование правого полушария, а у 2 женщин и 11 мужчин — доминирование левого полушария. Проверьте гипотезу о связи функциональной асимметрии головного мозга с полом.
Решение:
Поскольку в обеих выборках n1 и n2> 11 и диапазоны разброса значений в двух выборках не совпадают между собой, мы можем воспользоваться самым простым критерием для сопоставления двух выборок — критерием Q Розенбаума. Объемы выборок различаются менее чем на 10 человек, так, что ограничение о примерном равенстве выборок также не препятствует нам.
Таблица 1. Показатели выраженности функциональной асимметрии у мужчин и женщин
Группа 1 — мужчины (n=15 человек) |
Группа 2 — женщины (n=15 человек) |
||
Доминирование правового полушария |
4 |
13 |
|
Доминирование левого полушария |
11 |
2 |
Данные в таблице 1 расположены по степени доминирования того или иного полушария в мужской или женской выборке. Первым более высоким является ряд значений в женской выборке.
Средняя величина в мужской и женской выборке идентична и равна 7,5.
Сформулируем гипотезы.
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде [5; с. 24]. Статистические гипотезы подразделяются на нулевые и альтернативные.
Нулевая гипотеза — это гипотеза об отсутствии различий. Она обозначается как Н0 и называется нулевой потому, что содержит число 0:
X1—X2 =0, где X1, X2 — сопоставления значение признаков. Таким образом, нулевая гипотеза — это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза — это гипотеза о значимости различий. Она обозначается как Н1. Альтернативная гипотеза — это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Сформулируем основные гипотезы:
Н0: Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин.
Н1: Функциональная асимметрия головного мозга у мужчин выражена в большей степени, чем у женщин.
Сопоставим ряды значений для определения S1 и S2.
max 2 = 13
S1 =0
min 1 =4
S2 =1
Производим подсчет эмпирического значения Qэмп = S1+S2 = 0+1 = 1
По таблице 1 Приложения I [5; с. 316] определяем критическое значение Q для данных n1 и n2. Если Qэмп равно Q0,05 или превышает его, Н0 отвергается.
В данном случае Qкр = 6
6 (p?0,01)
Qэмп<Qкр
Следовательно принимается гипотеза Н0 и отвергается гипотеза Н1.
Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин, следовательно, функциональная асимметрия головного мозга не зависит от признака пола.
Список используемой литературы
1. Ермолаев О.Ю. Математическая статистика для психологов/ О.Ю. Ермолаев.- М.: МПСИ, Флинта, 2002. — 336 с.
2. Кутейников А.Н., Математические методы в психологии/А.Н. Кутейников.- М.: Речь, 2008. — 172 с.
3. Митина О.В., Математические методы в психологии. Практикум: Учебное пособие/О.В. Митина.- М.: Издательство Аспект — пресс, 2008. — 238 с.
4. Наследов А.Д., Математические методы в психологии: Учебное пособие/ А.Д. Наследов.- Спб: Речь, 2004. — 232 с.
5. Сидоренко Е.В., Методы математической обработки в психологии/ Е.В. Сидоренко.- М.: Речь, 2006. — 350 с.
6. Суходольский Г.В., Математические методы в психологии: Учебное пособие/ Г.В. Суходольский.- М.: Гуманитарный центр, 2008. — 284 с.
7. Титкова Л.С., Математические методы в психологии/ Л.С. Титкова.- Владивосток: Издательство ДВГУ, 2002. — 140 с.