Выдержка из текста работы
Термины теория систем и системный анализ или, более кратко — системный подход, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного истолкования.
Причина этого факта заключается, скорее всего, в динамичности процессов в области человеческой деятельности и, кроме того, в принципиальной возможности использовать системный подход практически в любой решаемой человеком задаче.
Более важно понять преимущество взгляда на этот мир с позиций системного подхода: возможность ставить и решать, по крайней мере, две задачи:
- расширить и углубить собственные представления о “механизме” взаимодействий объектов в системе; изучить и, возможно, открыть новые её свойства;
- повысить эффективность системы в том плане ее функционирования, который интересует нас больше всего.
Хотя хронология науки относит момент зарождения теории систем и системного анализа (далее ТССА) к середине 20-го столетия, тем не менее, можно понять, что возраст ТССА составляет ровно столько, сколько существует Homo Sapiens.
Другое дело, что по мере развитие науки, прежде всего — кибернетики, эта отрасль прикладной науки сформировалась в самостоятельный раздел. Ветви ТССА прослеживаются во всех “ведомственных кибернетиках”: биологической, медицинской, технической и, конечно же, экономической. В каждом случае объекты, составляющие систему, могут быть самого широкого диапазона — от живых существ в биологии до механизмов, компьютеров или каналов связи в технике.
Но, несмотря на это, задачи и принципы системного подхода остаются неизменными, не зависящими от природы объектов в системе.
Для лиц вашей будущей профессии наибольший интерес представляют, естественно, технико-экономические системы, а глобальной задачей системного подхода — совершенствование процесса управления экономикой.
Поэтому для нас с вами предметом системного анализа будут являться вопросы сбора, хранения и обработки информации об экономических объектах и, возможно, технологических процессах.
Используя классическое определение кибернетики как науки об общих законах получения, хранения, передачи и преобразования информации (кибернетика в дословном переводе — искусство управлять), можно считать ТССА фундаментальным разделом экономической кибернетики.
Потребность в использовании понятия «система» возникала для объектов различной физической природы с древних времен: еще Аристотель обратил внимание на то, что целое (т.е. система) несводимо к сумме частей, его образующих.
В частности, термин система и связанные с ним понятия комплексного, системного подхода исследуются и подвергаются осмыслению философами, биологами, психологами, кибернетиками, физиками, математиками, экономистами, инженерами различных специальностей.
Потребность в использовании этого термина возникает в тех случаях, когда невозможно что-то продемонстрировать, изобразить, представить математическим выражением и подчеркнуть, что это будет большим, сложным, не полностью сразу понятным (с неопределенностью) и целым, единым.
Пример:
- «солнечная система»;
- «система управления станком (механизмом, агрегатом, ТП)»;
- «система организационного управления производством (предприятием, городом, регионом и т.д.)»;
- «система кровообращения»;
- в математике термин система используется для отображения совокупности математических выражений или правил: «система уравнений», «система счисления», «система мер» и т.п.
Казалось бы, в этих случаях можно было бы воспользоваться терминами «множество» или «совокупность», но понятие системы подчеркивает упорядоченность, целостность, наличие определенной закономерности.
Интерес к системным представлениям проявлялся не только как к удобному обобщающему понятию, но и как к средству постановки задач с большой неопределенностью.
По мере усложнения производственных процессов, развития науки, изучения развития живых организмов появились задачи, которые не решались с помощью традиционных математических методов и в которых все большее место стал занимать собственно процесс постановки задачи, возросла роль эвристических методов, усложнился эксперимент, доказывающий адекватность формальной математической модели.
Для решения таких задач стали разрабатываться новые разделы математики; оформилась в качестве самостоятельной прикладная математика, приближающая математические методы к практическим задачам, возникло понятие, а затем и направление принятие решений, которое постановку задачи признает равноценным этапом ее решения. Однако средств постановки задачи новые направления не содержат.
Исследование процессов постановки задач, процесса разработки сложных проектов позволили обратить внимание на особую роль человека: человек является носителем целостного восприятия, сохранения целостности при расчленении проблемы, при распределении работ, носителем критериев принятия решения.
Однако человек не всегда справляется с этой ролью. Для того, чтобы организовать процесс проектирования, начали создаваться системы организации проектирования, системы управления разработками и т.п.
Понятие система широко использовалось в различных областях знаний, заинтересовало инженеров, и на определенной стадии развития научного знания теория систем оформилась в самостоятельную науку, как когда-то из прикладных арифметики, геометрии и других сформировалась обобщенная теория – математика.
ТССА, как отрасль науки, может быть разделена на две, достаточно условные части:
теоретическую: использующую такие отрасли как теория вероятностей, теория информации, теория игр, теория графов, теория расписаний, теория решений, топология, факторный анализ и др.;
прикладную, основанную на прикладной математической статистике, методах исследовании операций, системотехнике и т. п. Таким образом, ТССА широко использует достижения многих отраслей науки и этот “захват” непрерывно расширяется.
Вместе с тем, в теории систем имеется свое “ядро”, свой особый метод — системный подход к возникающим задачам. Сущность этого метода достаточно проста: все элементы системы и все операции в ней должны рассматриваться только как одно целое, только в совокупности, только во взаимосвязи друг с другом.
Плачевный опыт попыток решения системных вопросов с игнорированием этого принципа, попыток использования «местечкового» подхода достаточно хорошо изучен. Локальные решения, учет недостаточного числа факторов, локальная оптимизация — на уровне отдельных элементов почти всегда приводили к неэффективному в целом, а иногда и опасному по последствиям, результату.
МЕТОДИКА СИСТЕМНОГО АНАЛИЗА
Системный анализ представляет совокупность научных методов и практических приемов решения разнообразных проблем на основе системного подхода.
В основе методологии системного анализа лежат три концепции: проблема, решение проблемы и система.
Проблема — это несоответствие или различие между существующим и требуемым положением дел в какой-либо системе.
В качестве требуемого положения может выступать необходимое или желаемое. Необходимое состояние диктуется объективными условиями, а желаемое определяется субъективными предпосылками, в основе которых лежат объективные условия функционирования системы.
Проблемы, существующие в одной системе, как правило, не равнозначны. Для сравнения проблем, определения их приоритета используются атрибуты: важность, масштаб, общность, актуальность и т.д.
Выявление проблемы осуществляется путем идентификации симптомов, определяющих несоответствие системы своему предназначению или недостаточную ее эффективность. Систематически проявляющиеся симптомы образуют тенденцию.
Идентификация симптомов производится путем измерения и анализа различных показателей системы, нормальное значение которых известны. Отклонение показателя от нормы и является симптомом.
Решение проблемы состоит в ликвидации различий между существующим и требуемым состоянием системы. Ликвидация различий может производиться либо путем совершенствования системы, либо путем ее замены на новую.
Решение о совершенствовании или замене принимается с учетом следующих положений. Если направление совершенствования обеспечивает существенное увеличение жизненного цикла системы и затраты несравнимо малы по отношению к стоимости разработки системы, то решение о совершенствовании оправдано. В противном случае следует рассматривать вопрос о ее замене новой.
Для решения проблемы создается система.
Основными компонентами системного анализа являются:
1. Цель системного анализа.
2. Цель, которую должна достигнуть система в процессе функционирования.
3. Альтернативы или варианты построения или совершенствования системы, посредством которых возможно решение проблемы.
4. Ресурсы, необходимые для анализа и совершенствования существующей системы или создания новой.
5. Критерии или показатели, позволяющие сравнивать различные альтернативы и выбирать наиболее предпочтительные.
7. Модель, которая связывает воедино цель, альтернативы, ресурсы и критерии.
Методика проведения системного анализа
1. Описание системы:
- определение цели системного анализа;
- определение целей, назначения и функций системы (внешних и внутренних);
- определение роли и места в системе более высокого уровня;
- функциональное описание (вход, выход, процесс, обратная связь, ограничения);
- структурное описание (вскрытие взаимосвязей, стратификация и декомпозиция системы);
- информационное описание;
- описание жизненного цикла системы (создание, функционирование и в том числе совершенствование, разрушение);
2. Выявление и описание проблемы:
- определение состава показателей эффективности и методик их вычисления;
- Выбор функционала для оценки эффективности системы и задание требований к ней (определение необходимого (желаемого) положения дел);
- определение фактического положения дел (вычисление эффективности существующей системы с использованием выбранного функционала);
- установление несоответствия между необходимым (желаемым) и фактическим состоянием дел и его оценка;
- история возникновения несоответствия и анализ причин ее возникновения (симптомы и тенденции);
- формулировка проблемы;
- выявление связей проблемы с другими проблемами;
- прогнозирование развития проблемы ;
- оценка последствий проблемы и вывод о ее актуальности.
3. Выбор и реализация направления решения проблемы:
- структуризация проблемы (выделение подпроблем)
- определение узких мест в системе;
- исследование альтернативы “совершенствование системы — создание новой системы”;
- определение направлений решения проблемы (выбор альтернатив);
- оценка реализуемости направлений решения проблемы;
- сравнение альтернатив и выбор эффективного направления;
- согласование и утверждение выбранного направления решения проблемы;
- выделение этапов решения проблемы;
- реализация выбранного направления;
- проверка его эффективности.
ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА
Системный подход представляет собой направление методологии научного познания и социальной практики, в основе которой лежит рассмотрение объектов как систем.
Сущность СП заключается, во-первых, в понимании объекта исследования как системы и, во-вторых, в понимании процесса исследования объекта как системного по своей логике и применяемым средствам.
Как любая методология, системный подход подразумевает наличие определенных принципов и способов организации деятельности, в данном случае деятельности, связанной с анализом и синтезом систем.
В основе системного подхода лежат принципы: цели, двойственности, целостности, сложности, множественности и историзма. Рассмотрим подробнее содержание перечисленных принципов.
1. Принцип цели ориентирует на то, что при исследовании объекта необходимо прежде всего выявить цель его функционирования.
Нас в первую очередь должно интересовать не как построена система, а для чего она существует, какая цель стоит перед ней, чем она вызвана, каковы средства достижения цели?
Принцип цели конструктивен при соблюдении двух условий:
-цель должна быть сформулирована таким образом, чтобы степень ее достижения можно было оценить (задать) количественно;
— в системе должен быть механизм, позволяющий оценить степень достижения заданной цели.
Весьма важным атрибутом системы является ее эффективность. Теоретически доказано, что всегда существует функция ценности системы — в виде зависимости ее эффективности от условий построения и функционирования (почти всегда это экономический показатель). Кроме того, эта функция ограничена, а значит можно и нужно искать ее максимум. Максимум эффективности системы положен в основу принципа цели.
2. Принцип двойственности вытекает из принципа цели и означает, что система должна рассматриваться как часть системы более высокого уровня и в то же время как самостоятельная часть, выступающая как единое целое во взаимодействии со средой. В свою очередь каждый элемент системы обладает собственной структурой и также может рассматриваться как система.
Взаимосвязь с принципом цели состоит в том, что цель функционирования объекта должна быть подчинена решению задач функционирования системы более высокого уровня. Цель – категория внешняя по отношению к системе. Она ставится ей системой более высокого уровня, куда данная система входит как элемент.
Этот принцип запрещает рассматривать данную систему в отрыве от окружающей ее среды — как автономную, обособленную. Это означает обязательность учета внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть (подсистему) некоторой более общей системы.
3. Принцип целостности требует рассматривать объект как нечто выделенное из совокупности других объектов, выступающее целым по отношению к окружающей среде, имеющее свои специфические функции и развивающееся по свойственным ему законам. При этом не отрицается необходимость изучения отдельных сторон.
Итак, принцип целостности ТССА — это требование рассматривать совокупность элементов системы как одно целое или, более жестко, — запрет на рассмотрение системы как простого объединения элементов.
Этот принцип заключается в признании того, что свойства системы не просто сумма свойств ее элементов. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у отдельных элементов.
4. Принцип сложности указывает на необходимость исследования объекта, как сложного образования и, если сложность очень высока, нужно последовательно упрощать представление объекта, но так, чтобы сохранить все его существенные свойства.
Согласившись с необходимостью учета внешней среды, признавая логичность рассмотрения данной системы как части некоторой, большей ее, мы приходим к возможности (а иногда и необходимости) деления данной системы на части, подсистемы. Если последние оказываются недостаточно просты для анализа, с ними поступают точно также. Но в процессе такого деления нельзя нарушать предыдущие принципы — пока они соблюдены, деление оправдано, разрешено в том смысле, что гарантирует применимость практических методов, приемов, алгоритмов решения задач системного анализа.
5. Принцип множественности требует от исследователя представлять описание объекта на множестве уровней: морфологическом, функциональном, информационном.
Морфологический уровень дает представление о строении системы. Морфологическое описание не может быть исчерпывающим. Глубина описания, уровень детализации, то есть выбор элементов, внутрь которых описание не проникает, определяется назначением системы. Морфологическое описание иерархично.
Конкретизация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы.
Функциональное описание связано с преобразованием энергии и информации. Всякий объект интересен прежде всего результатом своего существования, местом, которое он занимает среди других объектов в окружающем мире.
Информационное описание дает представление об организации системы, т.е. об информационных взаимосвязях между элементами системы. Он дополняет функциональное и морфологическое описания.
На каждом уровне описания действуют свои, специфические закономерности. Все уровни тесно взаимосвязаны. Внося изменения на одном из уровней, необходимо проводить анализ возможных изменений на других уровнях.
6. Принцип историзма обязывает исследователя вскрывать прошлое системы и выявлять тенденции и закономерности ее развития в будущем.
Прогнозирование поведения системы в будущем является необходимым условием того, что принятые решения по совершенствованию существующей системы или создание новой обеспечивает эффективное функционирование системы в течении заданного времени.
Все изложенное выше позволяет формализовать определение термина система в виде — многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы нескольких уровней для достижения единой цели функционирования (целевой функции).